Showing 1 - 25 of 56 results
1.
Dynamic heterogeneity in an E. coli stress response regulon mediates gene activation and antimicrobial peptide tolerance.
Abstract:
The bacterial stress response is an intricately regulated system that plays a critical role in cellular resistance to drug treatment. The complexity of this response is further complicated by cell-to-cell heterogeneity in the expression of bacterial stress response genes. These genes are often organized into networks comprising one or more transcriptional regulators that control expression of a suite of downstream genes. While the expression heterogeneity of many of these upstream regulators has been characterized, the way in which this variability affects the larger downstream stress response remains hard to predict, prompting two key questions. First, how does heterogeneity and expression noise in stress response regulators propagate to the diverse downstream genes in their regulons. Second, when expression levels vary, how do multiple downstream genes act together to protect cells from stress. To address these questions, we focus on the transcription factor PhoP, a critical virulence regulator which coordinates pathogenicity in several gram-negative species. We use optogenetic stimulation to precisely control PhoP expression levels and examine how variations in PhoP affect the downstream activation of genes in the PhoP regulon. We find that these downstream genes exhibit differences both in mean expression level and sensitivity to increasing levels of PhoP. These response functions can also vary between individual cells, increasing heterogeneity in the population. We tie these variations to cell survival when bacteria are exposed to a clinically-relevant antimicrobial peptide, showing that high expression of the PhoP-regulon gene pmrD provides a protective effect against Polymyxin B. Overall, we demonstrate that even subtle heterogeneity in expression of a stress response regulator can have clear consequences for enabling bacteria to survive stress.
2.
A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases.
Abstract:
Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We use the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIPcas) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice. The REDLIP system is small enough to support packaging into adeno-associated viruses (AAVs), facilitating its therapeutic application. Demonstrating its capacity to treat metabolic diseases, we show that an AAV-delivered Fn-REDLIP system achieved optogenetic control of insulin expression to effectively lower blood glucose levels in type 1 diabetes model mice and control an anti-obesity therapeutic protein (thymic stromal lymphopoietin, TSLP) to reduce body weight in obesity model mice. REDLIP is a compact and sensitive optogenetic tool for reversible and non-invasive control that can facilitate basic biological and biomedical research.
3.
Optimizing HMG-CoA Synthase Expression for Enhanced Limonene Production in Escherichia coli through Temporal Transcription Modulation Using Optogenetics.
Abstract:
Overexpression of a single enzyme in a multigene heterologous pathway may be out of balance with the other enzymes in the pathway, leading to accumulated toxic intermediates, imbalanced carbon flux, reduced productivity of the pathway, or an inhibited growth phenotype. Therefore, optimal, balanced, and synchronized expression levels of enzymes in a particular metabolic pathway is critical to maximize production of desired compounds while maintaining cell fitness in a growing culture. Furthermore, the optimal intracellular concentration of an enzyme is determined by the expression strength, specific timing/duration, and degradation rate of the enzyme. Here, we modulated the intracellular concentration of a key enzyme, namely HMG-CoA synthase (HMGS), in the heterologous mevalonate pathway by tuning its expression level and period of transcription to enhance limonene production in Escherichia coli. Facilitated by the tuned blue-light inducible BLADE/pBad system, we observed that limonene production was highest (160 mg/L) with an intermediate transcription level of HMGS from moderate light illumination (41 au, 150 s ON/150 s OFF) throughout the growth. Owing to the easy penetration and removal of blue-light illumination from the growing culture which is hard to obtain using conventional chemical-based induction, we further explored different induction patterns of HMGS under strong light illumination (2047 au, 300 s ON) for different durations along the growth phases. We identified a specific timing of HMGS expression in the log phase (3-9 h) that led to optimal limonene production (200 mg/L). This is further supported by a mathematical model that predicts several periods of blue-light illumination (3-9 h, 0-9 h, 3-12 h, 0-12 h) to achieve an optimal expression level of HMGS that maximizes limonene production and maintains cell fitness. Compared to moderate and prolonged transcription (41 au, 150 s ON/150 s OFF, 0-73 h), strong but time-limited transcription (2047 au, 300 s ON, 3-9 h) of HMGS could maintain its optimal intracellular concentration and further increased limonene production up to 92% (250 mg/L) in the longer incubation (up to 73 h) without impacting cell fitness. This work has provided new insight into the "right amount" and "just-in-time" expression of a critical metabolite enzyme in the upper module of the mevalonate pathway using optogenetics. This study would complement previous findings in modulating HMGS expression and potentially be applicable to heterologous production of other terpenoids in E. coli.
4.
CELF2 promotes tau exon 10 inclusion via hinge domain-mediated nuclear condensation.
Abstract:
Alternative splicing is a fundamental process that contributes to the functional diversity and complexity of proteins. The regulation of each alternative splicing event involves the coordinated action of multiple RNA-binding proteins, creating a diverse array of alternatively spliced products. Dysregulation of alternative splicing is associated with various diseases, including neurodegeneration. Here we demonstrate that CELF2, a splicing regulator and a GWAS-identified risk factor for Alzheimer’s disease, binds to mRNAs associated with neurodegenerative diseases, with a specific interaction observed in the intron adjacent to exon 10 on Tau mRNA. Loss of CELF2 in the mouse brain results in a decreased inclusion of Tau exon 10, leading to a reduced 4R:3R ratio. Further exploration shows that the hinge domain of CELF2 possesses an intrinsically disordered region (IDR), which mediates CELF2 condensation and function. The functionality of IDR in regulating CELF2 function is underscored by its substitutability with IDRs from FUS and TAF15. Using TurboID we identified proteins that interact with CELF2 through its IDR. We revealed that CELF2 co-condensate with NOVA2 and SFPQ, which coordinate with CELF2 to regulate the alternative splicing of Tau exon 10. A negatively charged residue within the IDR (D388), which is conserved among CELF proteins, is critical for CELF2 condensate formation, interactions with NOVA2 and SFPQ, and function in regulating tau exon 10 splicing. Our data allow us to propose that CELF2 regulates Tau alternative splicing by forming condensates through its IDR with other splicing factors, and that the composition of the proteins within the condensates determines the outcomes of alternative splicing events.
5.
Optogenetic dissection of transcriptional repression in a multicellular organism.
Abstract:
Transcriptional control is fundamental to cellular function. However, despite knowing that transcription factors can repress or activate specific genes, how these functions are implemented at the molecular level has remained elusive, particularly in the endogenous context of developing animals. Here, we combine optogenetics, single-cell live-imaging, and mathematical modeling to study how a zinc-finger repressor, Knirps, induces switch-like transitions into long-lived quiescent states. Using optogenetics, we demonstrate that repression is rapidly reversible (~1 min) and memoryless. Furthermore, we show that the repressor acts by decreasing the frequency of transcriptional bursts in a manner consistent with an equilibrium binding model. Our results provide a quantitative framework for dissecting the in vivo biochemistry of eukaryotic transcriptional regulation.
6.
The G3BP Stress-Granule Proteins Reinforce the Translation Program of the Integrated Stress Response.
Abstract:
When mammalian cells are exposed to extracellular stress, they coordinate the condensation of stress granules (SGs) through the action of key nucleating proteins G3BP1 and G3BP2 (G3BPs) and, simultaneously, undergo a massive reduction in translation.1-5 Although SGs and G3BPs have been linked to this translation response, their overall impact has been unclear. Here, we investigate the longstanding question of how, and indeed whether, G3BPs and SGs shape the stress translation response. We find that SGs are enriched for mRNAs that are resistant to the stress-induced translation shutdown. Although the accurate recruitment of these stress-resistant mRNAs does require the context of stress, a combination of optogenetic tools and spike-normalized ribosome profiling demonstrates that G3BPs and SGs are necessary and sufficient to both help prioritize the translation of their enriched mRNAs and help suppress cytosolic translation. Together these results support a model in which G3BPs and SGs reinforce the stress translation program by prioritizing the translation of their resident mRNAs.
7.
Catalytic-dependent and independent functions of the histone acetyltransferase CBP promote pioneer factor-mediated zygotic genome activation.
Abstract:
Immediately after fertilization the genome is transcriptionally quiescent. Maternally encoded pioneer transcription factors reprogram the chromatin state and facilitate the transcription of the zygotic genome. In Drosophila, transcription is initiated by the pioneer factor Zelda. While Zelda-occupied sites are enriched with histone acetylation, a post-translational mark associated with active cis-regulatory regions, the functional relationship between Zelda and histone acetylation in zygotic genome activation remained unclear. We show that Zelda-mediated recruitment of the histone acetyltransferase CBP is essential for zygotic transcription. CBP catalytic activity is necessary for release of RNA Polymerase II (Pol II) into transcription elongation and for embryonic development. However, CBP also activates zygotic transcription independent of acetylation through Pol II recruitment. Neither acetylation nor CBP are required for the pioneering function of Zelda. Our data suggest that pioneer factor-mediated recruitment of CBP is a conserved mechanism required to activate zygotic transcription but that this role is separable from the function of pioneer factors in restructuring chromatin accessibility.
8.
Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping.
Abstract:
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
9.
Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae.
Abstract:
Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionality they can deliver and biological questions that can be probed.
10.
Optogenetic control of a horizontally acquired region in yeast prevent stuck fermentations.
-
Figueroa, D
-
Ruiz, D
-
Tellini, N
-
De Chiara, M
-
Kessi-Pérez, EI
-
Martínez, C
-
Liti, G
-
Querol, A
-
Guillamón, JM
-
Salinas, F
Abstract:
Nitrogen limitations in the grape must is the main cause of stuck fermentations during the winemaking process. In Saccharomyces cerevisiae, a genetic segment known as region A, which harbors 12 protein-coding genes, was acquired horizontally from a phylogenetically distant yeast species. This region is mainly present in the genome of wine yeast strains, carrying genes that have been associated with nitrogen utilization. Despite the putative importance of region A in yeast fermentation, its contribution to the fermentative process is largely unknown. In this work, we used a wine yeast strain to evaluate the contribution of region A to the fermentation process. To do this, we first sequenced the genome of the wine yeast strain known as ‘ALL’ using long-read sequencing and determined that region A is present in a single copy with two possible subtelomeric locations. We then implemented an optogenetic system in this wine yeast strain to precisely regulate the expression of each gene inside this region, generating a collection of 12 strains that allow for light- activated gene expression. To evaluate the role of these genes during fermentation, we assayed this collection using microculture and fermentation experiments in synthetic must with varying amounts of nitrogen concentration. Our results show that changes in gene expression for genes within this region can impact growth parameters and fermentation rate. We additionally found that the expression of various genes in region A is necessary to complete the fermentation process and prevent stuck fermentations under low nitrogen conditions. Altogether, our optogenetics-based approach demonstrates the importance of region A in completing fermentation under nitrogen-limited conditions.
11.
Illuminating morphogen and patterning dynamics with optogenetic control of morphogen production.
Abstract:
Cells use dynamic spatial and temporal cues to instruct cell fate decisions during development. Morphogens are key examples, where the concentration and duration of morphogen exposure produce distinct cell fates that drive tissue patterning. Studying the dynamics of these processes has been challenging. Here, we establish an optogenetic system for morphogen production that enables the investigation of developmental patterning in vitro. Using a tunable light-inducible gene expression system, we generate long-range Shh gradients that pattern neural progenitors into spatially distinct progenitor domains mimicking the spatial arrangement of neural progenitors found in vivo during vertebrate neural tube development. With this system, we investigate how biochemical features of Shh and the presence of morphogen-interacting proteins affect the patterning length scale. We measure tissue clearance rates, revealing that Shh has an extracellular half-life of about 1h, and we probe how the level and duration of morphogen exposure govern the acquisition and maintenance of cell fates. The rate of Shh turnover is substantially faster than the downstream gene expression dynamics, indicating that the gradient is continually renewed during patterning. Together the optogenetic approach establishes a simple experimental system for the quantitative interrogation of morphogen patterning. Controlling morphogen dynamics in a reproducible manner provides a framework to dissect the interplay between biochemical cues, the biophysics of gradient formation, and the transcriptional programmes underlying developmental patterning.
12.
Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice.
-
Fischer, AAM
-
Robertson, HB
-
Kong, D
-
Grimm, MM
-
Grether, J
-
Groth, J
-
Baltes, C
-
Fliegauf, M
-
Lautenschläger, F
-
Grimbacher, B
-
Ye, H
-
Helms, V
-
Weber, W
Abstract:
Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.
13.
Optogenetic control of pheromone gradients reveals functional limits of mating behavior in budding yeast.
Abstract:
Cell-cell communication through diffusible signals allows distant cells to coordinate biological functions. Such coordination depends on the signal landscapes generated by emitter cells and the sensory capacities of receiver cells. In contrast to morphogen gradients in embryonic development, microbial signal landscapes occur in open space with variable cell densities, spatial distributions, and physical environments. How do microbes shape signal landscapes to communicate robustly under such circumstances remains an unanswered question. Here we combined quantitative spatial optogenetics with biophysical theory to show that in the mating system of budding yeast— where two mates communicate to fuse—signal landscapes convey demographic or positional information depending on the spatial organization of mating populations. This happens because α-factor pheromone and its mate-produced protease Bar1 have characteristic wide and narrow diffusion profiles, respectively. Functionally, MATα populations signal their presence as collectives, but not their position as individuals, and Bar1 is a sink of alpha-factor, capable of both density-dependent global attenuation and local gradient amplification. We anticipate that optogenetic control of signal landscapes will be instrumental to quantitatively understand the spatial behavior of natural and engineered cell-cell communication systems.
14.
Light induced expression of gRNA allows for optogenetic gene editing of T lymphocytes in vivo.
Abstract:
There is currently a lack of tools capable of perturbing genes in both a precise and spatiotemporal fashion. CRISPR’s ease of use and flexibility, coupled with light’s unparalleled spatiotemporal resolution deliverable from a controllable source, makes optogenetic CRISPR a well-suited solution for precise spatiotemporal gene perturbations. Here we present a new optogenetic CRISPR tool, BLU-VIPR, that diverges from prevailing split-Cas design strategies and instead focuses on optogenetic regulation of gRNA production. This simplifies spatiotemporal gene perturbation and works in vivo with cells previously intractable to optogenetic gene editing. We engineered BLU-VIPR around a new potent blue-light activated transcription factor and ribozyme-flanked gRNA. The BLU-VIPR design is genetically encoded and ensures precise excision of multiple gRNAs from a single mRNA transcript, allowing for optogenetic gene editing in T lymphocytes in vivo.
15.
Spatiotemporal, optogenetic control of gene expression in organoids.
-
Legnini, I
-
Emmenegger, L
-
Zappulo, A
-
Rybak-Wolf, A
-
Wurmus, R
-
Martinez, AO
-
Jara, CC
-
Boltengagen, A
-
Hessler, T
-
Mastrobuoni, G
-
Kempa, S
-
Zinzen, R
-
Woehler, A
-
Rajewsky, N
Abstract:
Organoids derived from stem cells have become an increasingly important tool for studying human development and modeling disease. However, methods are still needed to control and study spatiotemporal patterns of gene expression in organoids. Here we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes in programmable spatiotemporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. Spatial and single-cell transcriptomic analyses showed that this local induction was sufficient to generate stereotypically patterned organoids and revealed new insights into SHH's contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
16.
Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy.
-
Dou, Y
-
Chen, R
-
Liu, S
-
Lee, YT
-
Jing, J
-
Liu, X
-
Ke, Y
-
Wang, R
-
Zhou, Y
-
Huang, Y
Abstract:
The cGAS-STING signaling pathway has emerged as a promising target for immunotherapy development. Here, we introduce a light-sensitive optogenetic device for control of the cGAS/STING signaling to conditionally modulate innate immunity, called 'light-inducible SMOC-like repeats' (LiSmore). We demonstrate that photo-activated LiSmore boosts dendritic cell (DC) maturation and antigen presentation with high spatiotemporal precision. This non-invasive approach photo-sensitizes cytotoxic T lymphocytes to engage tumor antigens, leading to a sustained antitumor immune response. When combined with an immune checkpoint blocker (ICB), LiSmore improves antitumor efficacy in an immunosuppressive lung cancer model that is otherwise unresponsive to conventional ICB treatment. Additionally, LiSmore exhibits an abscopal effect by effectively suppressing tumor growth in a distal site in a bilateral mouse model of melanoma. Collectively, our findings establish the potential of targeted optogenetic activation of the STING signaling pathway for remote immunomodulation in mice.
17.
Requirements for mammalian promoters to decode transcription factor dynamics.
Abstract:
In response to different stimuli many transcription factors (TFs) display different activation dynamics that trigger the expression of specific sets of target genes, suggesting that promoters have a way to decode dynamics. Here, we use optogenetics to directly manipulate the nuclear localization of a synthetic TF in mammalian cells without affecting other processes. We generate pulsatile or sustained TF dynamics and employ live cell microscopy and mathematical modelling to analyse the behaviour of a library of reporter constructs. We find decoding of TF dynamics occurs only when the coupling between TF binding and transcription pre-initiation complex formation is inefficient and that the ability of a promoter to decode TF dynamics gets amplified by inefficient translation initiation. Using the knowledge acquired, we build a synthetic circuit that allows obtaining two gene expression programs depending solely on TF dynamics. Finally, we show that some of the promoter features identified in our study can be used to distinguish natural promoters that have previously been experimentally characterized as responsive to either sustained or pulsatile p53 and NF-κB signals. These results help elucidate how gene expression is regulated in mammalian cells and open up the possibility to build complex synthetic circuits steered by TF dynamics.
18.
PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in Saccharomyces cerevisiae.
Abstract:
Metabolic engineering approaches do not exclusively require fine-tuning of heterologous genes but oftentimes also modulation or even induction of host gene expression, e.g., in order to rewire metabolic fluxes. Here, we introduce the programmable red light switch PhiReX 2.0, which can rewire metabolic fluxes by targeting endogenous promoter sequences through single-guide RNAs (sgRNAs) and activate gene expression in Saccharomyces cerevisiae upon red light stimulation. The split transcription factor is built from the plant-derived optical dimer PhyB and PIF3, which is fused to a DNA-binding domain based on the catalytically dead Cas9 protein (dCas9) and a transactivation domain. This design combines at least two major advantages: first, the sgRNAs, guiding dCas9 to the promoter of interest, can be exchanged in an efficient and straightforward Golden Gate-based cloning approach, which allows for rational or randomized combination of up to four sgRNAs in a single expression array. Second, target gene expression can be rapidly upregulated by short red light pulses in a light dose-dependent manner and returned to the native expression level by applying far-red light without interfering with the cell culture. Using the native yeast gene CYC1 as an example, we demonstrated that PhiReX 2.0 can upregulate CYC1 gene expression by up to 6-fold in a light intensity-dependent and reversible manner using a single sgRNA.
19.
Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions.
-
Kim, YJ
-
Lee, M
-
Lee, YT
-
Jing, J
-
Sanders, JT
-
Botten, GA
-
He, L
-
Lyu, J
-
Zhang, Y
-
Mettlen, M
-
Ly, P
-
Zhou, Y
-
Xu, J
Abstract:
Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops. Proteomic profiling of light-induced condensates by dCas9-mediated affinity purification uncovers multivalent interaction-dependent remodeling of macromolecular composition, resulting in the selective enrichment of transcriptional coactivators and chromatin structure proteins. Our findings support a model whereby the formation of nuclear condensates at native genomic loci reconfigures chromatin architecture and multiprotein assemblies to modulate gene transcription. Hence, LAMPS facilitates mechanistic interrogation of the relationship between nuclear condensation, genome structure, and gene transcription in living cells.
20.
An Optogenetic-Controlled Cell Reprogramming System for Driving Cell Fate and Light-Responsive Chimeric Mice.
Abstract:
Pluripotent stem cells (PSCs) hold great promise for cell-based therapies, disease modeling, and drug discovery. Classic somatic cell reprogramming to generate induced pluripotent stem cells (iPSCs) is often achieved based on overexpression of transcription factors (TFs). However, this process is limited by side effect of overexpressed TFs and unpredicted targeting of TFs. Pinpoint control over endogenous TFs expression can provide the ability to reprogram cell fate and tissue function. Here, a light-inducible cell reprogramming (LIRE) system is developed based on a photoreceptor protein cryptochrome system and clustered regularly interspaced short palindromic repeats/nuclease-deficient CRISPR-associated protein 9 for induced PSCs reprogramming. This system enables remote, non-invasive optogenetical regulation of endogenous Sox2 and Oct4 loci to reprogram mouse embryonic fibroblasts into iPSCs (iPSCLIRE ) under light-emitting diode-based illumination. iPSCLIRE cells can be efficiently differentiated into different cells by upregulating a corresponding TF. iPSCLIRE cells are used for blastocyst injection and optogenetic chimeric mice are successfully generated, which enables non-invasive control of user-defined endogenous genes in vivo, providing a valuable tool for facile and traceless controlled gene expression studies and genetic screens in mice. This LIRE system offers a remote, traceless, and non-invasive approach for cellular reprogramming and modeling of complex human diseases in basic biological research and regenerative medicine applications.
21.
Optogenetic control of RelA reveals effect of transcription factor dynamics on downstream gene expression.
Abstract:
Many transcription factors (TFs) translocate to the nucleus with varied dynamic patterns in response to different inputs. A notable example of such behavior is RelA, a subunit of NF-κB, which translocates to the nucleus with either pulsed or sustained dynamics, depending on the stimulus. Our understanding of how these dynamics are interpreted by downstream genes has remained incomplete, partly because ubiquitously used environmental inputs activate other transcriptional regulators in addition to RelA. Here, we use an optogenetic tool, CLASP (controllable light-activated shuttling and plasma membrane sequestration), to control RelA spatiotemporal dynamics in mouse fibroblasts and quantify their effect on downstream genes using RNA-seq. Using RelA-CLASP, we show for the first time that nuclear translocation of RelA, without post-translational modifications or activation of other transcriptional regulators, is sufficient to activate downstream genes. Furthermore, we find that TNFα, a common endogenous input, regulates many genes independently of RelA, and that this gene regulation is different from that induced by RelA-CLASP. Genes responsive to RelA-CLASP show a wide range of dynamics in response to a constant RelA input. We use a simple promoter model to recapitulate these diverse dynamic responses, as well as data collected in response to a pulsed RelA-CLASP input, and extract features of many RelA-responsive promoters. We also pinpoint many genes for which more complex models, involving feedback or multi-step promoters, may be needed to explain their response to constant and pulsed TF inputs. This study introduces a new robust tool for studying mammalian transcriptional regulation and demonstrates the power of optogenetic tools in dissecting the quantitative features of important cellular pathways.
22.
Light-switchable diphtherin transgene system combined with losartan for triple negtative breast cancer therapy based on nano drug delivery system.
-
Cheng, Y
-
Sun, R
-
He, M
-
Zhang, M
-
Hou, X
-
Sun, Y
-
Wang, J
-
Xu, J
-
He, H
-
Wang, H
-
Lan, M
-
Zhao, Y
-
Yang, Y
-
Chen, X
-
Gao, F
Abstract:
Breast cancer is a common malignancy in women. The abnormally dense collagen network in breast cancer forms a therapeutic barrier that hinders the penetration and anti-tumor effect of drugs. To overcome this hurdle, we adopted a therapeutic strategy to treat breast cancer which combined a light-switchable transgene system and losartan. The light-switchable transgene system could regulate expression of the diphtheria toxin A fragment (DTA) gene with a high on/off ratio under blue light and had great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system to achieve tumor microenvironment-responsive and targeted delivery of DTA-encoded plasmids (pDTA) to tumor sites via dual targeting to cluster of differentiation-44 and αvβ3 receptors. In vivo studies indicated that the combination of pDTA and losartan reduce the concentration of collagen type I from 5.9 to 1.9 µg/g and decreased the level of active transforming growth factor-β by 75.0% in tumor tissues. Moreover, deeper tumor penetration was achieved, tumor growth was inhibited, and the survival rate was increased. Our combination strategy provides a novel and practical method for clinical treatment of breast cancer.
23.
MYC amplifies gene expression through global changes in transcription factor dynamics.
Abstract:
The MYC oncogene has been studied for decades, yet there is still intense debate over how this transcription factor controls gene expression. Here, we seek to answer these questions with an in vivo readout of discrete events of gene expression in single cells. We engineered an optogenetic variant of MYC (Pi-MYC) and combined this tool with single-molecule RNA and protein imaging techniques to investigate the role of MYC in modulating transcriptional bursting and transcription factor binding dynamics in human cells. We find that the immediate consequence of MYC overexpression is an increase in the duration rather than in the frequency of bursts, a functional role that is different from the majority of human transcription factors. We further propose that the mechanism by which MYC exerts global effects on the active period of genes is by altering the binding dynamics of transcription factors involved in RNA polymerase II complex assembly and productive elongation.
24.
Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.
-
Liu, R
-
Yang, J
-
Yao, J
-
Zhao, Z
-
He, W
-
Su, N
-
Zhang, Z
-
Zhang, C
-
Zhang, Z
-
Cai, H
-
Zhu, L
-
Zhao, Y
-
Quan, S
-
Chen, X
-
Yang, Y
Abstract:
RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR-Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.
25.
Rapid and robust optogenetic control of gene expression in Drosophila.
-
di Pietro, F
-
Herszterg, S
-
Huang, A
-
Bosveld, F
-
Alexandre, C
-
Sancéré, L
-
Pelletier, S
-
Joudat, A
-
Kapoor, V
-
Vincent, JP
-
Bellaïche, Y
Abstract:
Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.