Showing 1 - 25 of 218 results
1.
Optogenetically engineered Septin-7 enhances immune cell infiltration of tumor spheroids.
Abstract:
Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells. Using protein allosteric design, we reprogram the three-dimensional structure of septin-7 and insert a blue light-responsive light-oxygen-voltage-sensing domain 2 (LOV2), creating a light-controllable septin-7-LOV2 hybrid protein. Blue light inhibits septin-7 function in live cells, inducing extended cell protrusions and cell polarization, enhancing cell transmigration efficiency through confining spaces. We genetically edited human natural killer cell line (NK92) and mouse primary CD8+ T-cells expressing the engineered protein, and we demonstrated improved penetration and cytotoxicity against various tumor spheroid models. Our proposed strategy to enhance immune cell infiltration is compatible with other methodologies and therefore, could be used in combination to further improve cell-based immunotherapies against solid tumors.
2.
Light-guided actin polymerization drives directed motility in protocells.
-
Matsubayashi, HT
-
Razavi, S
-
Rock, TW
-
Nakajima, D
-
Nakamur, H
-
Kramer, DA
-
Matsuura, T
-
Chen, B
-
Murata, S
-
Nomura, S
-
Inoue, T
Abstract:
Motility is a hallmark of life’s dynamic processes, enabling cells to actively chase prey, repair wounds, and shape organs. Recreating these intricate behaviors using well-defined molecules remains a major challenge at the intersection of biology, physics, and molecular engineering. Although the polymerization force of the actin cytoskeleton is characterized as a primary driver of cell motility, recapitulating this process in protocellular systems has proven elusive. The difficulty lies in the daunting task of distilling key components from motile cells and integrating them into model membranes in a physiologically relevant manner. To address this, we developed a method to optically control actin polymerization with high spatiotemporal precision within cell-mimetic lipid vesicles known as giant unilamellar vesicles (GUVs). Within these active protocells, the reorganization of actin networks triggered outward membrane extensions as well as the unidirectional movement of GUVs at speeds of up to 0.43 µm/min, comparable to typical adherent mammalian cells. Notably, our findings reveal a synergistic interplay between branched and linear actin forms in promoting membrane protrusions, highlighting the cooperative nature of these cytoskeletal elements. This approach offers a powerful platform for unraveling the intricacies of cell migration, designing synthetic cells with active morphodynamics, and advancing bioengineering applications, such as self-propelled delivery systems and autonomous tissue-like materials.
3.
Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.
-
Inaba, H
-
Imasaki, T
-
Aoyama, K
-
Yoshihara, S
-
Takazaki, H
-
Kato, T
-
Goto, H
-
Mitsuoka, K
-
Nitta, R
-
Nakata, T
Abstract:
Lamellipodia are sheet-like protrusions essential for migration and endocytosis, yet the ultrastructure of the actin cytoskeleton during lamellipodia formation remains underexplored. Here, we combined the optogenetic tool PA-Rac1 with cryo-ET to enable ultrastructural analysis of newly formed lamellipodia. We successfully visualized lamellipodia at various extension stages, representing phases of their formation. In minor extensions, several unbundled actin filaments formed “Minor protrusions” at the leading edge. For moderately extended lamellipodia, cross-linked actin filaments formed small filopodia-like structures, termed “mini filopodia.” In fully extended lamellipodia, filopodia matured at multiple points, and cross-linked actin filaments running nearly parallel to the leading edge increased throughout the lamellipodia. These observations suggest that actin polymerization begins in specific plasma membrane regions, forming mini filopodia that either mature into full filopodia or detach from the leading edge to form parallel filaments. This actin turnover likely drives lamellipodial protrusion, providing new insights into actin dynamics and cell migration.
4.
Mesoscale regulation of MTOCs by the E3 ligase TRIM37.
Abstract:
Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well-established, less is known about the suppression of non-centrosomal MTOCs (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had remained unknown. Here, we elucidate TRIM37’s activation process, beginning with TRAF domain-directed substrate recognition, progressing through B-box domain-mediated oligomerization, and culminating in RING domain dimerization. Using optogenetics, we demonstrate that TRIM37’s E3 activity is directly coupled to the assembly state of its substrates, activating only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and, by echoing TRIM5’s restriction of the HIV capsid, unveils a conserved activation blueprint among TRIM proteins for controlling mesoscale assembly turnover.
5.
Rho/Rok-dependent regulation of actomyosin contractility at tricellular junctions controls epithelial permeability in Drosophila.
Abstract:
Cell contacts in epithelia are remodeled to regulate paracellular permeability and to control passage of migrating cells, but how barrier function is modulated while preserving epithelial integrity is not clear. In the follicular epithelium of Drosophila ovaries, tricellular junctions (TCJs) open transiently in a process termed patency to allow passage of externally produced yolk proteins for uptake by the oocyte. Here we show that modulation of actomyosin contractility at cell vertices controls TCJ permeability. Before patency, circumferential actomyosin bundles are anchored at apical follicle cell vertices, where tension-sensing junctional proteins, Rho-associated kinase (Rok), and active Myosin II accumulate and maintain vertices closed. TCJ opening is initiated by redistribution of Myosin II from circumferential bundles to a medial pool, accompanied by decreasing tension on vertices. This transition requires activation of Cofilin-dependent F-actin disassembly by the phosphatase Slingshot and Myosin II inactivation by Myosin light chain phosphatase, and is counteracted by Rok. Accordingly, constitutive activation of Myosin or of Rho signaling prevent vertex opening, whereas reduced Myosin II or Rok activity cause excessive and premature vertex opening. Thus, opening of intercellular gaps in the follicular epithelium does not require actomyosin-based forces, but relies on a reduction of actomyosin contractility. Conversely, F-actin assembly is required for closing intercellular gaps after patency. Our findings are consistent with a force transduction model in which TCJ integrity is maintained by vertex-anchored contractile actomyosin. We propose that the cell-type-specific organization of actomyosin at cell vertices determines the mode of contractility-dependent regulation of epithelial permeability.
6.
Long range mutual activation establishes Rho and Rac polarity during cell migration.
Abstract:
In migrating cells, the GTPase Rac organizes a protrusive front, whereas Rho organizes a contractile back. How these GTPases are appropriately positioned at the opposite poles of a migrating cell is unknown. Here we leverage optogenetics, manipulation of cell mechanics, and mathematical modeling to reveal a surprising long-range mutual activation of the front and back polarity programs that complements their well-known local mutual inhibition. This long-range activation is rooted in two distinct modes of mechanochemical crosstalk. Local Rac-based protrusion stimulates Rho activation at the opposite side of the cell via membrane tension-based activation of mTORC2. Conversely, local Rho-based contraction induces cortical-flow-based remodeling of membrane-to-cortex interactions leading to PIP2 release, PIP3 generation, and Rac activation at the opposite side of the cell. We develop a minimal unifying mechanochemical model of the cell to explain how this long-range mechanical facilitation complements local biochemical inhibition to enable robust global Rho and Rac partitioning. Finally, we validate the importance of this long-range facilitation in the context of chemoattractant-based cell polarization and migration in primary human lymphocytes. Our findings demonstrate that the actin cortex and plasma membrane function as an integrated mechanochemical system for long-range partitioning of Rac and Rho during cell migration and likely other cellular contexts.
7.
Mechanosensitive recruitment of Vinculin maintains junction integrity and barrier function at epithelial tricellular junctions.
Abstract:
Apical cell-cell junctions, including adherens junctions and tight junctions, adhere epithelial cells to one another and regulate selective permeability at both bicellular junctions and tricellular junctions (TCJs). Although several specialized proteins are known to localize at TCJs, it remains unclear how actomyosin-mediated tension transmission at TCJs contributes to the maintenance of junction integrity and barrier function at these sites. Here, utilizing the embryonic epithelium of gastrula-stage Xenopus laevis embryos, we define a mechanism by which the mechanosensitive protein Vinculin helps anchor the actomyosin network at TCJs, thus maintaining TCJ integrity and barrier function. Using an optogenetic approach to acutely increase junctional tension, we find that Vinculin is mechanosensitively recruited to apical junctions immediately surrounding TCJs. In Vinculin knockdown (KD) embryos, junctional actomyosin intensity is decreased and becomes disorganized at TCJs. Using fluorescence recovery after photobleaching (FRAP), we show that Vinculin KD reduces actin stability at TCJs and destabilizes Angulin-1, a key tricellular tight junction protein involved in regulating barrier function at TCJs. When Vinculin KD embryos are subjected to increased tension, TCJ integrity is not maintained, filamentous actin (F-actin) morphology at TCJs is disrupted, and breaks in the signal of the tight junction protein ZO-1 signal are detected. Finally, using a live imaging barrier assay, we detect increased barrier leaks at TCJs in Vinculin KD embryos. Together, our findings show that Vinculin-mediated actomyosin organization is required to maintain junction integrity and barrier function at TCJs and reveal new information about the interplay between adhesion and barrier function at TCJs.
8.
Inward transport of organelles drives outward migration of the spindle during C. elegans meiosis.
-
Peraza, AA
-
Li, W
-
Lele, A
-
Lazureanu, D
-
Hampton, MF
-
Do, RM
-
Lafrades, MC
-
Barajas, MG
-
Batres, AA
-
McNally, FJ
Abstract:
Cortical positioning of the meiotic spindle within an oocyte is required to expel chromosomes into polar bodies to generate a zygote with the correct number of chromosomes. In C. elegans, yolk granules and mitochondria are packed inward, away from the cortex while the spindle moves outward, both in a kinesin-dependent manner. The kinesin-dependent inward packing of yolk granules suggests the existence of microtubules with minus ends at the cortex and plus ends extending inward, making it unclear how kinesin moves the spindle outward. We hypothesized that inward packing of organelles might indirectly force the spindle outward by volume exclusion. To test this hypothesis, we generated a strain in which the only kinesin consists of motor domains with no cargo-binding tail optogenetically attached to mitochondria. This mitochondria-only kinesin packed mitochondria into a tight ball and efficiently moved the meiotic spindle to the cortex, supporting the volume exclusion hypothesis.
9.
Local optogenetic NMYII activation within the zebrafish neural rod results in long-range, asymmetric force propagation.
Abstract:
How do cellular forces propagate through tissue to allow large-scale morphogenetic events? To investigate this question, we use an in vivo optogenetic approach to reversibly manipulate actomyosin contractility at depth within the developing zebrafish neural rod. Contractility was induced along the lateral cortices of a small patch of developing neural epithelial progenitor cells, resulting in a shortening of these cells along their mediolateral axis. Imaging the immediate response of surrounding tissue uncovered a long-range, tangential, and elastic tissue deformation along the anterior-posterior axis. Unexpectedly, this was highly asymmetric, propagating in either the anterior or the posterior direction in response to local gradients in optogenetic activation. The degree of epithelialisation did not have a significant impact on the extent of force propagation via lateral cortices. We also uncovered a dynamic oscillatory expansion and contraction of the tissue along the anterior-posterior axis, with wavelength matching rhombomere length. Together, this study suggests dynamic and wave-like propagation of force between rhombomeres along the anterior-posterior axis. It also suggests that cell generated forces are actively propagated over long distances within the tissue, and that local anisotropies in tissue organisation and contractility may be sufficient to drive directional force propagation.
10.
PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.
Abstract:
Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin’s involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
11.
In vivo optogenetic manipulations of endogenous proteins reveal spatiotemporal roles of microtubule and kinesin in dendrite patterning.
Abstract:
During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in Drosophila. This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
12.
Feedback regulation by the RhoA-specific GEF ARHGEF17 regulates actomyosin network disassembly.
Abstract:
We report that the RhoA-specific guanine nucleotide exchange factor ARHGEF17 localizes at the back of a fibroblast’s contractile lamella and regulates its disassembly. This localization emerges through retrograde ARHGEF17 transport together with actomyosin flow that most likely involves interactions with ATP-actin at F-actin barbed ends. During this process, ARHGEF17 increasingly oligomerizes into clusters that co-localize with myosin filaments, and correlate with their disassembly at lamella’s distal edge. ARHGEF17 loss of function leads to decreased RhoA activity at the lamella back and impairs its disassembly. High RhoA activity is however maintained at the lamella front where phosphorylated myosin light chain is observed. We propose that low levels of actomyosin network fracture at the lamella back generates barbed ends leading to generation of ATP-actin and ARHGEF17 binding, local activation of RhoA-dependent contractility, ensuring robust lamella disassembly. ARHGEF17 exemplifies the spatio-temporal complexity of Rho GTPase signaling and the requirement of feedback mechanism for homeostasis of contractile actomyosin networks.
13.
Traveling wave chemotaxis of neutrophil-like HL-60 cells.
Abstract:
The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants fMLP and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration. Under a slower wave, cells re-orient and migrate at the back of the wave; thus, cell displacement is canceled out or even becomes negative as cells chase the receding wave. FRET-based analysis indicated that these patterns of movement correlated well with spatiotemporal changes in Cdc42 activity. Furthermore, pharmacological perturbations suggested that migration in front of the wave depends on Cdc42, whereas that in the back of the wave depends more on PI3K/Rac and ROCK. These results suggest that pulsatile attractant waves may recruit or disperse neutrophils, depending on their speed and degree of cell polarization.
14.
Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors.
Abstract:
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
15.
Focal adhesions are controlled by microtubules through local contractility regulation.
-
Aureille, J
-
Prabhu, SS
-
Barnett, SF
-
Farrugia, AJ
-
Arnal, I
-
Lafanechère, L
-
Low, BC
-
Kanchanawong, P
-
Mogilner, A
-
Bershadsky, AD
Abstract:
Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.
16.
Shaping an evanescent focus of light for high spatial resolution optogenetic activations in live cells.
Abstract:
Confining light illumination in the three dimensions of space is a challenge for various applications. Among these, optogenetic methods developed for live experiments in cell biology would benefit from such a localized illumination as it would improve the spatial resolution of diffusive photosensitive proteins leading to spatially constrained biological responses in specific subcellular organelles. Here, we describe a method to create and move a focused evanescent spot, at the interface between a glass substrate and an aqueous sample, across the field of view of a high numerical aperture microscope objective, using a digital micro-mirror device (DMD). We show that, after correcting the optical aberrations, light is confined within a spot of sub-micron lateral size and ∼100 nm axial depth above the coverslip, resulting in a volume of illumination drastically smaller than the one generated by a standard propagative focus. This evanescent focus is sufficient to induce a more intense and localized recruitment compared to a propagative focus on the optogenetic system CRY2-CIBN, improving the resolution of its pattern of activation.
17.
Endogenous OptoRhoGEFs reveal biophysical principles of epithelial tissue furrowing.
Abstract:
During development, epithelia function as malleable substrates that undergo extensive remodeling to shape developing embryos. Optogenetic control of Rho signaling provides an avenue to investigate the mechanisms of epithelial morphogenesis, but transgenic optogenetic tools can be limited by variability in tool expression levels and deleterious effects of transgenic overexpression on development. Here, we use CRISPR/Cas9 to tag Drosophila RhoGEF2 and Cysts/Dp114RhoGEF with components of the iLID/SspB optogenetic heterodimer, permitting light-dependent control over endogenous protein activities. Using quantitative optogenetic perturbations, we uncover a dose-dependence of tissue furrow depth and bending behavior on RhoGEF recruitment, revealing mechanisms by which developing embryos can shape tissues into particular morphologies. We show that at the onset of gastrulation, furrows formed by cell lateral contraction are oriented and size-constrained by a stiff basal actomyosin layer. Our findings demonstrate the use of quantitative, 3D-patterned perturbations of cell contractility to precisely shape tissue structures and interrogate developmental mechanics.
18.
Myosin II actively regulates Drosophila proprioceptors.
Abstract:
Auditory receptors can be motile to actively amplify their mechanical input. Here we describe a novel and different type of motility that, residing in supporting cells, shapes physiological responses of mechanoreceptor cells. In Drosophila larvae, supporting cap cells transmit mechanical stimuli to proprioceptive chordotonal neurons. We found that the cap cells are strongly pre-stretched at rest to twice their relaxed length. The tension in these cells is modulated by non-muscle myosin-II motors. Activating the motors optogenetically causes contractions of the cap cells. Cap-cell-specific knockdown of the regulatory light chain of myosin-II alters mechanically evoked receptor neuron responses, converting them from phasic to more tonic, impairing sensory adaptation. Hence, two motile mechanisms seem to operate in concert in insect chordotonal organs, one in the sensory receptor neurons, based on dynein, and the other in supporting cells, based on myosin.
19.
Using an ER-specific optogenetic mechanostimulator to understand the mechanosensitivity of the endoplasmic reticulum.
-
Song, Y
-
Zhao, Z
-
Xu, L
-
Huang, P
-
Gao, J
-
Li, J
-
Wang, X
-
Zhou, Y
-
Wang, J
-
Zhao, W
-
Wang, L
-
Zheng, C
-
Gao, B
-
Jiang, L
-
Liu, K
-
Guo, Y
-
Yao, X
-
Duan, L
Abstract:
The ability of cells to perceive and respond to mechanical cues is essential for numerous biological activities. Emerging evidence indicates important contributions of organelles to cellular mechanosensitivity and mechanotransduction. However, whether and how the endoplasmic reticulum (ER) senses and reacts to mechanical forces remains elusive. To fill the knowledge gap, after developing a light-inducible ER-specific mechanostimulator (LIMER), we identify that mechanostimulation of ER elicits a transient, rapid efflux of Ca2+ from ER in monkey kidney COS-7 cells, which is dependent on the cation channels transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and polycystin-2 (PKD2) in an additive manner. This ER Ca2+ release can be repeatedly stimulated and tuned by varying the intensity and duration of force application. Moreover, ER-specific mechanostimulation inhibits ER-to-Golgi trafficking. Sustained mechanostimuli increase the levels of binding-immunoglobulin protein (BiP) expression and phosphorylated eIF2α, two markers for ER stress. Our results provide direct evidence for ER mechanosensitivity and tight mechanoregulation of ER functions, placing ER as an important player on the intricate map of cellular mechanotransduction.
20.
Dynamic light-responsive RhoA activity regulates mechanosensitive stem cell fate decision in 3D matrices.
Abstract:
The behavior of stem cells is regulated by mechanical cues in their niche that continuously vary due to extracellular matrix (ECM) remodeling, pulsated mechanical stress exerted by blood flow, and/or cell migration. However, it is still unclear how dynamics of mechanical cues influence stem cell lineage commitment, especially in a 3D microenvironment where mechanosensing differs from that in a 2D microenvironment. In the present study, we investigated how temporally varying mechanical signaling regulates expression of the early growth response 1 gene (Egr1), which we recently discovered to be a 3D matrix-specific mediator of mechanosensitive neural stem cell (NSC) lineage commitment. Specifically, we temporally controlled the activity of Ras homolog family member A (RhoA), which is known to have a central role in mechanotransduction, using our previously developed Arabidopsis thaliana cryptochrome-2-based optoactivation system. Interestingly, pulsed RhoA activation induced Egr1 upregulation in stiff 3D gels only, whereas static light stimulation induced an increase in Egr1 expression across a wide range of 3D gel stiffnesses. Actin assembly inhibition limited Egr1 upregulation upon RhoA activation, implying that RhoA signaling requires an actin-involved process to upregulate Egr1. Consistently, static-light RhoA activation rather than pulsed-light activation restricted neurogenesis in soft gels. Our findings indicate that the dynamics of RhoA activation influence Egr1-mediated stem cell fate within 3D matrices in a matrix stiffness-dependent manner.
21.
The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia.
-
Gonçalves, M
-
Lopes, C
-
Alégot, H
-
Osswald, M
-
Bosveld, F
-
Ramos, C
-
Richard, G
-
Bellaïche, Y
-
Mirouse, V
-
Morais-de-Sá, E
Abstract:
Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
22.
OptoProfilin: A Single Component Biosensor of Applied Cellular Stress.
Abstract:
The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.
23.
Optogenetic Regulation of EphA1 RTK Activation and Signaling.
Abstract:
Eph receptors are ubiquitous class of transmembrane receptors that mediate cell-cell communication, proliferation, differentiation, and migration. EphA1 receptors specifically play an important role in angiogenesis, fetal development, and cancer progression; however, studies of this receptor can be challenging as its ligand, ephrinA1, binds and activates several EphA receptors simultaneously. Optogenetic strategies could be applied to circumvent this requirement for ligand activation and enable selective activation of the EphA1 subtype. In this work, we designed and tested several iterations of an optogenetic EphA1 - Cryptochrome 2 (Cry2) fusion, investigating their capacity to mimic EphA1-dependent signaling in response to light activation. We then characterized the key cell signaling target of MAPK phosphorylation activated in response to light stimulation. The optogenetic regulation of Eph receptor RTK signaling without the need for external stimulus promises to be an effective means of controlling individual Eph receptor-mediated activities and creates a path forward for the identification of new Eph-dependent functions.
24.
A temperature-inducible protein module for control of mammalian cell fate.
Abstract:
Inducible protein switches are used throughout the biosciences to allow on-demand control of proteins in response to chemical or optical inputs. However, these inducers either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. Using custom devices for rapid and high-throughput temperature control during live-cell microscopy, we find that the original Melt variant fully switches states between 28-32°C, and state changes can be observed within minutes of temperature changes. Melt was highly modular, permitting thermal control over diverse intracellular processes including signaling, proteolysis, and nuclear shuttling through straightforward end-to-end fusions with no further engineering. Melt was also highly tunable, giving rise to a library of Melt variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt could thermally regulate important cell decisions over this range, including cytoskeletal rearrangement and apoptosis. Thus Melt represents a versatile thermogenetic module that provides straightforward, temperature-based, real-time control of mammalian cells with broad potential for biotechnology and biomedicine.
25.
Epithelial folding through local degradation of an elastic basement membrane plate.
Abstract:
Epithelia are polarised layers of cells that line the outer and inner surfaces of organs. At the basal side, the epithelial cell layer is supported by a basement membrane, which is a thin polymeric layer of self-assembled extracellular matrix (ECM) that tightly adheres to the basal cell surface. Proper shaping of epithelial layers is an important prerequisite for the development of healthy organs during the morphogenesis of an organism. Experimental evidence indicates that local degradation of the basement membrane drives epithelial folding. Here, we present a coarse-grained plate theory model of the basement membrane that assumes force balance between i) cell-transduced active forces and ii) deformation-induced elastic forces. We verify key assumptions of this model through experiments in the Drosophila wing disc epithelium and demonstrate that the model can explain the emergence of outward epithelial folds upon local plate degradation. Our model accounts for local degradation of the basement membrane as a mechanism for the generation of epithelial folds in the absence of epithelial growth.