Showing 201 - 225 of 422 results
201.
Visualization and Manipulation of Intracellular Signaling.
Abstract:
Cells respond to a wide range of extracellular stimuli, and process the input information through an intracellular signaling system comprised of biochemical and biophysical reactions, including enzymatic and protein-protein interactions. It is essential to understand the molecular mechanisms underlying intracellular signal transduction in order to clarify not only physiological cellular functions but also pathological processes such as tumorigenesis. Fluorescent proteins have revolutionized the field of life science, and brought the study of intracellular signaling to the single-cell and subcellular levels. Much effort has been devoted to developing genetically encoded fluorescent biosensors based on fluorescent proteins, which enable us to visualize the spatiotemporal dynamics of cell signaling. In addition, optogenetic techniques for controlling intracellular signal transduction systems have been developed and applied in recent years by regulating intracellular signaling in a light-dependent manner. Here, we outline the principles of biosensors for probing intracellular signaling and the optogenetic tools for manipulating them.
202.
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.
Abstract:
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
203.
Strategies for Engineering and Rewiring Kinase Regulation.
Abstract:
Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.
204.
Optogenetic approaches to investigate spatiotemporal signaling during development.
Abstract:
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
205.
Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star.
-
Yang, J
-
Li, L
-
Shemetov, AA
-
Lee, S
-
Zhao, Y
-
Liu, Y
-
Shen, Y
-
Li, J
-
Oka, Y
-
Verkhusha, VV
-
Wang, LV
Abstract:
Focusing light deep by engineering wavefronts toward guide stars inside scattering media has potential biomedical applications in imaging, manipulation, stimulation, and therapy. However, the lack of endogenous guide stars in biological tissue hinders its translations to in vivo applications. Here, we use a reversibly switchable bacterial phytochrome protein as a genetically encoded photochromic guide star (GePGS) in living tissue to tag photons at targeted locations, achieving light focusing inside the tissue by wavefront shaping. As bacterial phytochrome-based GePGS absorbs light differently upon far-red and near-infrared illumination, a large dynamic absorption contrast can be created to tag photons inside tissue. By modulating the GePGS at a distinctive frequency, we suppressed the competition between GePGS and tissue motions and formed tight foci inside mouse tumors in vivo and acute mouse brain tissue, thus improving light delivery efficiency and specificity. Spectral multiplexing of GePGS proteins with different colors is an attractive possibility.
206.
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.
Abstract:
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.
207.
Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.
Abstract:
The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
208.
Structural Basis of Design and Engineering for Advanced Plant Optogenetics.
Abstract:
In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
209.
Single-Molecule Analysis and Engineering of DNA Motors.
Abstract:
Molecular motors are diverse enzymes that transduce chemical energy into mechanical work and, in doing so, perform critical cellular functions such as DNA replication and transcription, DNA supercoiling, intracellular transport, and ATP synthesis. Single-molecule techniques have been extensively used to identify structural intermediates in the reaction cycles of molecular motors and to understand how substeps in energy consumption drive transitions between the intermediates. Here, we review a broad spectrum of single-molecule tools and techniques such as optical and magnetic tweezers, atomic force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), nanopore tweezers, and hybrid techniques that increase the number of observables. These methods enable the manipulation of individual biomolecules via the application of forces and torques and the observation of dynamic conformational changes in single motor complexes. We also review how these techniques have been applied to study various motors such as helicases, DNA and RNA polymerases, topoisomerases, nucleosome remodelers, and motors involved in the condensation, segregation, and digestion of DNA. In-depth analysis of mechanochemical coupling in molecular motors has made the development of artificially engineered motors possible. We review techniques such as mutagenesis, chemical modifications, and optogenetics that have been used to re-engineer existing molecular motors to have, for instance, altered speed, processivity, or functionality. We also discuss how single-molecule analysis of engineered motors allows us to challenge our fundamental understanding of how molecular motors transduce energy.
210.
Principles and applications of optogenetics in developmental biology.
Abstract:
The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.
211.
Optogenetic modulation of a catalytic biofilm for biotransformation of indole into tryptophan.
Abstract:
In green chemical synthesis, biofilms as biocatalysts have shown great promise. Efficient biofilm-mediated biocatalysis requires the modulation of biofilm formation. Optogenetic tools are ideal for controlling biofilms, as light is non-invasive, easily controllable and cost-efficient. In this study, we employed a near infrared (NIR) light-responsive gene circuit to modulate the cellular level of c-di-GMP, a central regulator of the prokaryote biofilm lifestyle, which allows us to regulate biofilm formation using NIR light. By applying the engineered biofilm to catalyze the biotransformation of indole into tryptophan in submerged biofilm reactors, we showed that NIR light enhanced biofilm formation to result in ~ 30% increase in tryptophan yield, which demonstrates the feasibility of applying light to modulate the formation and performance of catalytic biofilms for chemical production. The c-di-GMP targeted optogenetic approach for modulating catalytic biofilm we have demonstrated here would allow the wide application for further biofilm-mediated biocatalysis.
212.
Optogenetics sheds new light on tissue engineering and regenerative medicine.
Abstract:
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
213.
Red/Far-Red Light Switchable Cargo Attachment and Release in Bacteria-Driven Microswimmers.
Abstract:
In bacteria-driven microswimmers, i.e., bacteriabots, artificial cargos are attached to flagellated chemotactic bacteria for active delivery with potential applications in biomedical technology. Controlling when and where bacteria bind and release their cargo is a critical step for bacteriabot fabrication and efficient cargo delivery/deposition at the target site. Toward this goal, photoregulating the cargo integration and release in bacteriabots using red and far-red light, which are noninvasive stimuli with good tissue penetration and provide high spatiotemporal control, is proposed. In the bacteriabot design, the surfaces of E. coli and microsized model cargo particles with the proteins PhyB and PIF6, which bind to each other under red light and dissociate from each other under far-red light are functionalized. Consequently, the engineered bacteria adhere and transport the model cargo under red light and release it on-demand upon far-red light illumination due to the photoswitchable PhyB-PIF6 protein interaction. Overall, the proof-of-concept for red/far-red light switchable bacteriabots, which opens new possibilities in the photoregulation in biohybrid systems for bioengineering, targeted drug delivery, and lab-on-a-chip devices, is demonstrated.
214.
Production of Phytochromes by High-Cell-Density E. coli Fermentation.
Abstract:
Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.
215.
Signal transduction in photoreceptor histidine kinases.
Abstract:
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
216.
Light-induced dimerization approaches to control cellular processes.
Abstract:
Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.
217.
Interneurons Regulate Locomotion Quiescence via Cyclic Adenosine Monophosphate Signaling During Stress-Induced Sleep in Caenorhabditis elegans.
-
Cianciulli, A
-
Yoslov, L
-
Buscemi, K
-
Sullivan, N
-
Vance, RT
-
Janton, F
-
Szurgot, MR
-
Buerkert, T
-
Li, E
-
Nelson, MD
Abstract:
Sleep is evolutionarily conserved, thus studying simple invertebrates such as Caenorhabditis elegans can provide mechanistic insight into sleep with single cell resolution. A conserved pathway regulating sleep across phylogeny involves cyclic adenosine monophosphate (cAMP), a ubiquitous second messenger that functions in neurons by activating protein kinase A (PKA). C. elegans sleep in response to cellular stress caused by environmental insults (stress-induced sleep (SIS)), a model for studying sleep during sickness. SIS is controlled by simple neural circuitry, thus allows for cellular dissection of cAMP signaling during sleep. We employed a red light activated adenylyl cyclase (AC), IlaC22, to identify cells involved in SIS regulation. We find that pan-neuronal activation of IlaC22 disrupts SIS through mechanisms independent of the cAMP response element binding protein (CREB). Activating IlaC22 in the single DVA interneuron, the paired RIF interneurons, and in the CEPsh glia identified these cells as wake-promoting. Using a cAMP biosensor, epac1-camps, we found that cAMP is decreased in the RIF and DVA interneurons by neuropeptidergic signaling from the ALA neuron. Ectopic over expression of sleep-promoting neuropeptides coded by flp-13 and flp-24, released from the ALA, reduced cAMP in the DVA and RIFs, respectively. Over expression of the wake-promoting neuropeptides coded by pdf-1 increased cAMP levels in the RIFs. Using a combination of optogenetic manipulation and in vivo imaging of cAMP we have identified wake-promoting neurons downstream of the neuropeptidergic output of the ALA. Our data suggest that sleep- and wake-promoting neuropeptides signal to reduce and heighten cAMP levels during sleep, respectively.
218.
Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases.
Abstract:
As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.
219.
Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains.
Abstract:
Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3',5'-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.
220.
High-throughput multicolor optogenetics in microwell plates.
Abstract:
Optogenetic probes can be powerful tools for dissecting complexity in cell biology, but there is a lack of instrumentation to exploit their potential for automated, high-information-content experiments. This protocol describes the construction and use of the optoPlate-96, a platform for high-throughput three-color optogenetics experiments that allows simultaneous manipulation of common red- and blue-light-sensitive optogenetic probes. The optoPlate-96 enables illumination of individual wells in 96-well microwell plates or in groups of wells in 384-well plates. Its design ensures that there will be no cross-illumination between microwells in 96-well plates, and an active cooling system minimizes sample heating during light-intensive experiments. This protocol details the steps to assemble, test, and use the optoPlate-96. The device can be fully assembled without specialized equipment beyond a 3D printer and a laser cutter, starting from open-source design files and commercially available components. We then describe how to perform a typical optogenetics experiment using the optoPlate-96 to stimulate adherent mammalian cells. Although optoPlate-96 experiments are compatible with any plate-based readout, we describe analysis using quantitative single-cell immunofluorescence. This workflow thus allows complex optogenetics experiments (independent control of stimulation colors, intensity, dynamics, and time points) with high-dimensional outputs at single-cell resolution. Starting from 3D-printed and laser-cut components, assembly and testing of the optoPlate-96 can be accomplished in 3-4 h, at a cost of ~$600. A full optoPlate-96 experiment with immunofluorescence analysis can be performed within ~24 h, but this estimate is variable depending on the cell type and experimental parameters.
221.
Optogenomic Interfaces: Bridging Biological Networks With the Electronic Digital World.
-
Jornet, JM
-
Bae, Y
-
Handelmann, CR
-
Decker, B
-
Balcerak, A
-
Sangwan, A
-
Miao, P
-
Desai, A
-
Feng, L
-
Stachowiak, EK
Abstract:
The development of optical nano-bio interfaces is a fundamental step toward connecting biological networks and traditional electronic computing systems. Compared to conventional chemical and electrical nano-bio interfaces, the use of light as a mediator enables new type of interfaces with unprecedented spatial and temporal resolutions. In this paper, the state of the art and future research directions in optogenomic interfaces are discussed. Optogenomic interfaces are light-mediated nano-bio interfaces that allow the control of the genome, i.e., the genes and their interactions in the cell nucleus (and, thus, of all the cell functionalities) with (sub) cellular resolution and high temporal accuracy. Given its fundamental role in the process of cell development, the study is focused on the interactions with the fibroblast growth factor receptor 1 (FGFR1) gene and the integrative nuclear FGFR1 signaling (INFS) module in stem cells and in neuronal cells, whose control opens the door to transformative applications, including reconstructive medicine and cancer therapy. Three stages of optogenomic interfaces are described, ranging from already experimentally validated interfaces activating broad cellular responses and expressing individual genes to more advanced interfaces able to regulate and correct DNA topology, chromatin structure, and cellular development.
222.
Regulation of signaling proteins in the brain by light.
Abstract:
In order to study the role of signaling proteins, such as kinases and GTPases, in brain functions it is necessary to control their activity at the appropriate spatiotemporal resolution and to examine the cellular and behavioral effects of such changes in activity. Reduced spatiotemporal resolution in the regulation of these proteins activity will impede the ability to understand the proteins normal functions as longer modification of their activity in non-normal locations could lead to effects different from their natural functions. To control intracellular signaling proteins at the highest temporal resolution recent innovative optogenetic approaches were developed to allow the control of photoactivable signaling proteins activity by light. These photoactivatable proteins can be activated in selected cell population in brain and in specific subcellular compartments. Minimal-invasive tools are being developed to photoactivate these proteins for study and therapy. Together these techniques afford an unprecedented spatiotemporal control of signaling proteins activity to unveil the function of brain proteins with high accuracy in behaving animals. As dysfunctional signaling proteins are involved in brain diseases, the optogenetic technique has also the potential to be used as a tool to treat brain diseases.
223.
Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.
Abstract:
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
224.
Light-Controlled, High-Resolution Patterning of Living Engineered Bacteria Onto Textiles, Ceramics, and Plastic.
Abstract:
Living cells can impart materials with advanced functions, such as sense-and-respond, chemical production, toxin remediation, energy generation and storage, self-destruction, and self-healing. Here, an approach is presented to use light to pattern Escherichia coli onto diverse materials by controlling the expression of curli fibers that anchor the formation of a biofilm. Different colors of light are used to express variants of the structural protein CsgA fused to different peptide tags. By projecting color images onto the material containing bacteria, this system can be used to pattern the growth of composite materials, including layers of protein and gold nanoparticles. This is used to pattern cells onto materials used for 3D printing, plastics (polystyrene), and textiles (cotton). Further, the adhered cells are demonstrated to respond to sensory information, including small molecules (IPTG and DAPG) and light from light-emitting diodes. This work advances the capacity to engineer responsive living materials in which cells provide diverse functionality.
225.
Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles.
Abstract:
The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.