Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 176 - 200 of 218 results
176.

LOVTRAP: an optogenetic system for photoinduced protein dissociation.

blue LOVTRAP HEK293 HeLa in vitro Control of cytoskeleton / cell motility / cell shape
Nat Methods, 18 Jul 2016 DOI: 10.1038/nmeth.3926 Link to full text
Abstract: LOVTRAP is an optogenetic approach for reversible light-induced protein dissociation using protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in the dissociation constant (Kd). By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins' access to the cell edge, demonstrating a naturally occurring 3-mHz cell-edge oscillation driven by interactions of Vav2, Rac1, and PI3K proteins.
177.

An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells.

blue VVD YtvA E. coli Control of cytoskeleton / cell motility / cell shape Transgene expression Cell death
Cell Res, 17 Jun 2016 DOI: 10.1038/cr.2016.74 Link to full text
Abstract: Light-switchable gene expression systems provide transient, non-invasive and reversible means to control biological processes with high tunability and spatiotemporal resolution. In bacterial cells, a few light-regulated gene expression systems based on photoreceptors and two-component regulatory systems (TCSs) have been reported, which respond to blue, green or red light.
178.

Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage.

blue TULIP HeLa NIH/3T3 Control of cytoskeleton / cell motility / cell shape Cell cycle control
J Cell Biol, 13 Jun 2016 DOI: 10.1083/jcb.201603025 Link to full text
Abstract: The GTPase RhoA promotes contractile ring assembly and furrow ingression during cytokinesis. Although many factors that regulate RhoA during cytokinesis have been characterized, the spatiotemporal regulatory logic remains undefined. We have developed an optogenetic probe to gain tight spatial and temporal control of RhoA activity in mammalian cells and demonstrate that cytokinetic furrowing is primarily regulated at the level of RhoA activation. Light-mediated recruitment of a RhoGEF domain to the plasma membrane leads to rapid induction of RhoA activity, leading to assembly of cytokinetic furrows that partially ingress. Furthermore, furrow formation in response to RhoA activation is not temporally or spatially restricted. RhoA activation is sufficient to generate furrows at both the cell equator and cell poles, in both metaphase and anaphase. Remarkably, furrow formation can be initiated in rounded interphase cells, but not adherent cells. These results indicate that RhoA activation is sufficient to induce assembly of functional contractile rings and that cell rounding facilitates furrow formation.
179.

Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

blue bPAC (BlaC) euPAC OaPAC E. coli HEK293 in vitro rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Proc Natl Acad Sci USA, 31 May 2016 DOI: 10.1073/pnas.1517520113 Link to full text
Abstract: Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit.
180.

A bacterial phytochrome-based optogenetic system controllable with near-infrared light.

blue near-infrared red BphP1/PpsR2 PhyB/PIF6 VVD HeLa in vitro mouse in vivo Control of cytoskeleton / cell motility / cell shape
Nat Methods, 9 May 2016 DOI: 10.1038/nmeth.3864 Link to full text
Abstract: Light-mediated control of protein-protein interactions to regulate cellular pathways is an important application of optogenetics. Here, we report an optogenetic system based on the reversible light-induced binding between the bacterial phytochrome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria. We extensively characterized the BphP1-PpsR2 interaction both in vitro and in mammalian cells and then used this interaction to translocate target proteins to specific cellular compartments, such as the plasma membrane and the nucleus. We showed light-inducible control of cell morphology that resulted in a substantial increase of the cell area. We demonstrated light-dependent gene expression with 40-fold contrast in cultured cells, 32-fold in subcutaneous mouse tissue, and 5.7-fold in deep tissues in mice. Characteristics of the BphP1-PpsR2 optogenetic system include its sensitivity to 740- to 780-nm near-infrared light, its ability to utilize an endogenous biliverdin chromophore in eukaryotes (including mammals), and its spectral compatibility with blue-light-driven optogenetic systems.
181.

Optogenetic oligomerization of Rab GTPases regulates intracellular membrane trafficking.

blue CRY2/CIB1 Cos-7 HeLa NIH/3T3 PC-12 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
Nat Chem Biol, 11 Apr 2016 DOI: 10.1038/nchembio.2064 Link to full text
Abstract: Intracellular membrane trafficking, which is involved in diverse cellular processes, is dynamic and difficult to study in a spatiotemporal manner. Here we report an optogenetic strategy, termed light-activated reversible inhibition by assembled trap of intracellular membranes (IM-LARIAT), that uses various Rab GTPases combined with blue-light-induced hetero-interaction between cryptochrome 2 and CIB1. In this system, illumination induces a rapid and reversible intracellular membrane aggregation that disrupts the dynamics and functions of the targeted membrane. We applied IM-LARIAT to specifically perturb several Rab-mediated trafficking processes, including receptor transport, protein sorting and secretion, and signaling initiated from endosomes. We finally used this tool to reveal different functions of local Rab5-mediated and Rab11-mediated membrane trafficking in growth cones and soma of young hippocampal neurons. Our results show that IM-LARIAT is a versatile tool that can be used to dissect spatiotemporal functions of intracellular membranes in diverse systems.
182.

Optogenetic activation of axon guidance receptors controls direction of neurite outgrowth.

blue CRY2/CRY2 C. elegans in vivo HEK293T Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Sci Rep, 7 Apr 2016 DOI: 10.1038/srep23976 Link to full text
Abstract: Growth cones of extending axons navigate to correct targets by sensing a guidance cue gradient via membrane protein receptors. Although most signaling mechanisms have been clarified using an in vitro approach, it is still difficult to investigate the growth cone behavior in complicated extracellular environment of living animals due to the lack of tools. We develop a system for the light-dependent activation of a guidance receptor, Deleted in Colorectal Cancer (DCC), using Arabidopsis thaliana Cryptochrome 2, which oligomerizes upon blue-light absorption. Blue-light illumination transiently activates DCC via its oligomerization, which initiates downstream signaling in the illuminated subcellular region. The extending axons are attracted by illumination in cultured chick dorsal root ganglion neurons. Moreover, light-mediated navigation of the growth cones is achieved in living Caenorhabditis elegans. The photo-manipulation system is applicable to investigate the relationship between the growth cone behavior and its surrounding environment in living tissue.
183.

Subcellular optogenetic activation of Cdc42 controls local and distal signaling to drive immune cell migration.

blue iLID RAW264.7 Control of cytoskeleton / cell motility / cell shape
Mol Biol Cell, 3 Mar 2016 DOI: 10.1091/mbc.e15-12-0832 Link to full text
Abstract: Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses.
184.

An Optogenetic Method to Modulate Cell Contractility during Tissue Morphogenesis.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
Dev Cell, 7 Dec 2015 DOI: 10.1016/j.devcel.2015.10.020 Link to full text
Abstract: Morphogenesis of multicellular organisms is driven by localized cell shape changes. How, and to what extent, changes in behavior in single cells or groups of cells influence neighboring cells and large-scale tissue remodeling remains an open question. Indeed, our understanding of multicellular dynamics is limited by the lack of methods allowing the modulation of cell behavior with high spatiotemporal precision. Here, we developed an optogenetic approach to achieve local modulation of cell contractility and used it to control morphogenetic movements during Drosophila embryogenesis. We show that local inhibition of apical constriction is sufficient to cause a global arrest of mesoderm invagination. By varying the spatial pattern of inhibition during invagination, we further demonstrate that coordinated contractile behavior responds to local tissue geometrical constraints. Together, these results show the efficacy of this optogenetic approach to dissect the interplay between cell-cell interaction, force transmission, and tissue geometry during complex morphogenetic processes.
185.

Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.

blue CRY2/CIB1 HeLa NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Biophys J, 3 Nov 2015 DOI: 10.1016/j.bpj.2015.08.042 Link to full text
Abstract: Recently developed optogenetic methods promise to revolutionize cell biology by allowing signaling perturbations to be controlled in space and time with light. However, a quantitative analysis of the relationship between a custom-defined illumination pattern and the resulting signaling perturbation is lacking. Here, we characterize the biophysical processes governing the localized recruitment of the Cryptochrome CRY2 to its membrane-anchored CIBN partner. We develop a quantitative framework and present simple procedures that enable predictive manipulation of protein distributions on the plasma membrane with a spatial resolution of 5 μm. We show that protein gradients of desired levels can be established in a few tens of seconds and then steadily maintained. These protein gradients can be entirely relocalized in a few minutes. We apply our approach to the control of the Cdc42 Rho GTPase activity. By inducing strong localized signaling perturbation, we are able to monitor the initiation of cell polarity and migration with a remarkable reproducibility despite cell-to-cell variability.
186.

Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide.

blue CRY2/CIB1 iLID TULIP in vitro mouse IA32 fibroblasts S. cerevisiae Control of cytoskeleton / cell motility / cell shape Benchmarking
ACS Synth Biol, 30 Oct 2015 DOI: 10.1021/acssynbio.5b00119 Link to full text
Abstract: Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies.
187.

An optogenetic system for interrogating the temporal dynamics of Akt.

blue CRY2/CIB1 C2C12 HEK293 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Sci Rep, 1 Oct 2015 DOI: 10.1038/srep14589 Link to full text
Abstract: The dynamic activity of the serine/threonine kinase Akt is crucial for the regulation of diverse cellular functions, but the precise spatiotemporal control of its activity remains a critical issue. Herein, we present a photo-activatable Akt (PA-Akt) system based on a light-inducible protein interaction module of Arabidopsis thaliana cryptochrome2 (CRY2) and CIB1. Akt fused to CRY2phr, which is a minimal light sensitive domain of CRY2 (CRY2-Akt), is reversibly activated by light illumination in several minutes within a physiological dynamic range and specifically regulates downstream molecules and inducible biological functions. We have generated a computational model of CRY2-Akt activation that allows us to use PA-Akt to control the activity quantitatively. The system provides evidence that the temporal patterns of Akt activity are crucial for generating one of the downstream functions of the Akt-FoxO pathway; the expression of a key gene involved in muscle atrophy (Atrogin-1). The use of an optical module with computational modeling represents a general framework for interrogating the temporal dynamics of biomolecules by predictive manipulation of optogenetic modules.
188.

Labelling and optical erasure of synaptic memory traces in the motor cortex.

blue AsLOV2 HEK293 mouse in vivo rat cortical neurons rat hippocampal slices Control of cytoskeleton / cell motility / cell shape
Nature, 9 Sep 2015 DOI: 10.1038/nature15257 Link to full text
Abstract: Dendritic spines are the major loci of synaptic plasticity and are considered as possible structural correlates of memory. Nonetheless, systematic manipulation of specific subsets of spines in the cortex has been unattainable, and thus, the link between spines and memory has been correlational. We developed a novel synaptic optoprobe, AS-PaRac1 (activated synapse targeting photoactivatable Rac1), that can label recently potentiated spines specifically, and induce the selective shrinkage of AS-PaRac1-containing spines. In vivo imaging of AS-PaRac1 revealed that a motor learning task induced substantial synaptic remodelling in a small subset of neurons. The acquired motor learning was disrupted by the optical shrinkage of the potentiated spines, whereas it was not affected by the identical manipulation of spines evoked by a distinct motor task in the same cortical region. Taken together, our results demonstrate that a newly acquired motor skill depends on the formation of a task-specific dense synaptic ensemble.
189.

An Engineered Split Intein for Photoactivated Protein Trans-Splicing.

blue AsLOV2 E. coli HeLa Control of cytoskeleton / cell motility / cell shape Cell death
PLoS ONE, 28 Aug 2015 DOI: 10.1371/journal.pone.0135965 Link to full text
Abstract: Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.
190.

Probing Yeast Polarity with Acute, Reversible, Optogenetic Inhibition of Protein Function.

red PhyB/PIF6 S. cerevisiae Control of cytoskeleton / cell motility / cell shape Cell cycle control
ACS Synth Biol, 2 Jun 2015 DOI: 10.1021/acssynbio.5b00053 Link to full text
Abstract: We recently developed a technique for rapidly and reversibly inhibiting protein function through light-inducible sequestration of proteins away from their normal sites of action. Here, we adapt this method for inducible inactivation of Bem1, a scaffold protein involved in budding yeast polarity. We find that acute inhibition of Bem1 produces profound defects in cell polarization and cell viability that are not observed in bem1Δ. By disrupting Bem1 activity at specific points in the cell cycle, we demonstrate that Bem1 is essential for the establishment of polarity and bud emergence but is dispensable for the growth of an emerged bud. By taking advantage of the reversibility of Bem1 inactivation, we show that pole size scales with cell size, and that this scaling is dependent on the actin cytoskeleton. Our experiments reveal how rapid reversible inactivation of protein function complements traditional genetic approaches. This strategy should be widely applicable to other biological contexts.
191.

Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1.

blue AsLOV2 MCF10A Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
J Cell Biol, 11 May 2015 DOI: 10.1083/jcb.201412015 Link to full text
Abstract: Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell-cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cell-cell adhesion formation in human breast epithelial cells in 3D environments. We identify formin-like 2 (FMNL2) as being specifically required for actin assembly and turnover at newly formed cell-cell contacts as well as for human epithelial lumen formation. FMNL2 associates with components of the AJ complex involving Rac1 activity and the FMNL2 C terminus. Optogenetic control of Rac1 in living cells rapidly drove FMNL2 to epithelial cell-cell contact zones. Furthermore, Rac1-induced actin assembly and subsequent AJ formation critically depends on FMNL2. These data uncover FMNL2 as a driver for human epithelial AJ formation downstream of Rac1.
192.

Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.

blue CRY2/CRY2 HEK293T NIH/3T3 rat hippocampal NSCs Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Nat Commun, 22 Apr 2015 DOI: 10.1038/ncomms7898 Link to full text
Abstract: Transmembrane receptors are the predominant conduit through which cells sense and transduce extracellular information into intracellular biochemical signals. Current methods to control and study receptor function, however, suffer from poor resolution in space and time and often employ receptor overexpression, which can introduce experimental artefacts. We report a genetically encoded approach, termed Clustering Indirectly using Cryptochrome 2 (CLICR), for spatiotemporal control over endogenous transmembrane receptor activation, enabled through the optical regulation of target receptor clustering and downstream signalling using noncovalent interactions with engineered Arabidopsis Cryptochrome 2 (Cry2). CLICR offers a modular platform to enable photocontrol of the clustering of diverse transmembrane receptors including fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor (PDGFR) and integrins in multiple cell types including neural stem cells. Furthermore, light-inducible manipulation of endogenous receptor tyrosine kinase (RTK) activity can modulate cell polarity and establish phototaxis in fibroblasts. The resulting spatiotemporal control over cellular signalling represents a powerful new optogenetic framework for investigating and controlling cell function and fate.
193.

Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins.

blue Magnets VVD Cos-7 NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Nat Commun, 24 Feb 2015 DOI: 10.1038/ncomms7256 Link to full text
Abstract: Optogenetic methods take advantage of photoswitches to control the activity of cellular proteins. Here, we completed a multi-directional engineering of the fungal photoreceptor Vivid to develop pairs of distinct photoswitches named Magnets. These new photoswitches were engineered to recognize each other based on the electrostatic interactions, thus preventing homodimerization and enhancing light-induced heterodimerization. Furthermore, we tuned the switch-off kinetics by four orders of magnitude and developed several variants, including those with substantially faster kinetics than any of the other conventional dimerization-based blue spectrum photoswitches. We demonstrate the utility of Magnets as powerful tools that can optogenetically manipulate molecular processes in biological systems.
194.

Controlling fertilization and cAMP signaling in sperm by optogenetics.

blue bPAC (BlaC) mouse in vivo mouse sperm cells Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 20 Jan 2015 DOI: 10.7554/elife.05161 Link to full text
Abstract: Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.
195.

Optogenetic control of organelle transport and positioning.

blue CRY2/CIB1 TULIP Cos-7 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Nature, 7 Jan 2015 DOI: 10.1038/nature14128 Link to full text
Abstract: Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.
196.

Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling.

blue CRY2/CIB1 MCF7 Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci USA, 5 Jan 2015 DOI: 10.1073/pnas.1409667112 Link to full text
Abstract: Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction.
197.

Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.

blue AsLOV2 iLID in vitro mouse IA32 fibroblasts Control of cytoskeleton / cell motility / cell shape
Proc Natl Acad Sci USA, 22 Dec 2014 DOI: 10.1073/pnas.1417910112 Link to full text
Abstract: The discovery of light-inducible protein-protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.
198.

An optimized optogenetic clustering tool for probing protein interaction and function.

blue CRY2/CRY2 CRY2olig Cos-7 HEK293 S. cerevisiae Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
Nat Commun, 18 Sep 2014 DOI: 10.1038/ncomms5925 Link to full text
Abstract: The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
199.

Optogenetic engineering: light-directed cell motility.

blue CRY2/CIB1 Cos-7 MTLn3 REF52 Control of cytoskeleton / cell motility / cell shape
Angew Chem Int Ed Engl, 25 Aug 2014 DOI: 10.1002/anie.201404198 Link to full text
Abstract: Genetically encoded, light-activatable proteins provide the means to probe biochemical pathways at specific subcellular locations with exquisite temporal control. However, engineering these systems in order to provide a dramatic jump in localized activity, while retaining a low dark-state background remains a significant challenge. When placed within the framework of a genetically encodable, light-activatable heterodimerizer system, the actin-remodelling protein cofilin induces dramatic changes in the F-actin network and consequent cell motility upon illumination. We demonstrate that the use of a partially impaired mutant of cofilin is critical for maintaining low background activity in the dark. We also show that light-directed recruitment of the reduced activity cofilin mutants to the cytoskeleton is sufficient to induce F-actin remodeling, formation of filopodia, and directed cell motility.
200.

Spatio-temporally precise activation of engineered receptor tyrosine kinases by light.

blue AtLOV2 CrLOV1 NcWC1-LOV RsLOV VfAU1-LOV VVD CHO-K1 hBE HEK293 in vitro SPC212 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
EMBO J, 1 Jul 2014 DOI: 10.15252/embj.201387695 Link to full text
Abstract: Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.
Submit a new publication to our database