Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"BLUF domains"
Showing 176 - 182 of 182 results
176.

Fast manipulation of cellular cAMP level by light in vivo.

blue euPAC D. melanogaster in vivo HEK293 Xenopus oocytes Immediate control of second messengers Neuronal activity control
Nat Methods, 26 Nov 2006 DOI: 10.1038/nmeth975 Link to full text
Abstract: The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.
177.

Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena.

blue BLUF domains Background
Photochem Photobiol Sci, 15 Mar 2005 DOI: 10.1039/b417212d Link to full text
Abstract: Photoactivated adenylyl cyclase (PAC) was first purified from a photosensing organelle (the paraflagellar body) of the unicellular flagellate Euglena gracilis, and is regarded as the photoreceptor for the step-up photophobic response. Here, we report the kinetic properties of photoactivation of PAC and a change in intracellular cAMP levels upon blue light irradiation. Activation of PAC was dependent both on photon fluence rate and duration of irradiation, between which reciprocity held well in the range of 2--50 micromol m(-2) s(-1)(total fluence of 1200 micromol m(-2)). Intermittent irradiation also caused activation of PAC in a photon fluence-dependent manner irrespective of cycle periods. Wavelength dependency of PAC activation showed prominent peaks in the UV-B/C, UV-A and blue regions of the spectrum. The time course of the changes in intracellular cAMP levels corresponded well with that of the step-up photophobic response. From this and the kinetic properties of PAC photoactivation, we concluded that an increase in intracellular cAMP levels evoked by photoactivation of PAC is a key event of the step-up photophobic response.
178.

BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms.

blue red BLUF domains Fluorescent proteins LOV domains Phytochromes Background
Trends Biochem Sci, 1 Oct 2002 DOI: 10.1016/s0968-0004(02)02181-3 Link to full text
Abstract: A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
179.

Divalent cation-induced aggregation of chromaffin granule membranes.

blue red violet BLUF domains Fluorescent proteins LOV domains Magnets Phytochromes Review
Membr Biochem, 1979 DOI: doi.org/10.3390/life10120318 Link to full text
Abstract: Divalent cations induce the aggregation of chromaffin granule ghosts (CG membranes) at millimolar concentrations. Monovalent cations produce the same effect at 100-fold higher concentrations. The kinetics of the dimerization phase were followed by light-scattering changes observed in stopped-flow rapid mixing experiments. The rate constant for Ca2+-induced dimerization (kapp) is 0.86-1.0 x 10(9) M-1sec-1, based on the "molar" vesicle concentration. This value is close to the values predicted by theory for the case of diffusion-controlled reaction (7.02 x 10(9) M-1sec-1), indicating that there is no energy barrier to dimerization. Arrhenius plots between 10 degrees and 42 degrees C support this; the activation energy observed, +4.4 Kcal, is close to the value (4.6-4.8 Kcal) predicted for diffusion control according to theory. Artificial vesicles prepared from CG lipids were also found to have cation-induced aggregation, but the rates (values of kapp) were less than 1/100 as large as those with native CG membranes. Also, significant differences were found with respect to cation specificity. It is concluded that the slow rates are due to the low probability that the segments of membrane which approach will be matched in polar head group composition and disposition. Thus large numbers of approaches are necessary before matched segments come into aposition. The salient features of the chromaffin granule membrane aggregation mechanism are as follows: (a) In the absence of cations capable of shielding and binding, the membranes are held apart by electrostatic repulsion of their negatively charged surfaces. (b) The divalent and monovalent cation effects on aggregation are due to their ability to shield these charges, allowing a closer approach of the membrane surfaces. (c) The major determinants of the aggregation rates of CG membranes are proteins which protrude from the (phospholipid) surface of the membrane and serve as points of primary contact. Transmembrane contact between these proteins does not require full neutralization of the surface charge and surface potential arising from the negatively charged phospholipids. (d) After contact between proteins is established, the interaction between membranes can be strengthened through transmembrane hydrogen bonding of phosphatidyl ethanolamine polar head groups, divalent cation-mediated salt bridging, and segregation of phosphatidylcholine out of the region of contact.
180.

Trypsin-catalyzed activation of aspartase.

blue bPAC (BlaC) mIMCD-3 Signaling cascade control Immediate control of second messengers
Biochem Biophys Res Commun, 17 Nov 1975 DOI: 10.1083/jcb.202306002 Link to full text
Abstract: Abstract not available.
181.

A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from Streptomyces griseus and Diplococcus Pneumoniae.

blue BLUF domains Cryptochromes LOV domains CHO DP-12 Background
Biochem Biophys Res Commun, 3 Nov 1975 DOI: 10.1007/s00253-024-13363-4 Link to full text
Abstract: Abstract not available.
182.

Studies on variant glucose-6-phosphate dehydrogenases: G6PD Fort Worth.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers Neuronal activity control
Biochem Med, Jul 1975 DOI: 10.1016/j.isci.2024.110687 Link to full text
Abstract: Abstract not available.
Submit a new publication to our database