Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1726 - 1750 of 1813 results
1726.

Function, structure and mechanism of bacterial photosensory LOV proteins.

blue LOV domains Review Background
Nat Rev Microbiol, 8 Aug 2011 DOI: 10.1038/nrmicro2622 Link to full text
Abstract: LOV (light, oxygen or voltage) domains are protein photosensors that are conserved in bacteria, archaea, plants and fungi, and detect blue light via a flavin cofactor. LOV domains are present in both chemotrophic and phototrophic bacterial species, in which they are found amino-terminally of signalling and regulatory domains such as sensor histidine kinases, diguanylate cyclases-phosphodiesterases, DNA-binding domains and regulators of RNA polymerase σ-factors. In this Review, we describe the current state of knowledge about the function of bacterial LOV proteins, the structural basis of LOV domain-mediated signal transduction, and the use of LOV domains as genetically encoded photoswitches in synthetic biology.
1727.

Structure of a light-activated LOV protein dimer that regulates transcription.

blue LOV domains Background
Sci Signal, 2 Aug 2011 DOI: 10.1126/scisignal.2001945 Link to full text
Abstract: Light, oxygen, or voltage (LOV) protein domains are present in many signaling proteins in bacteria, archaea, protists, plants, and fungi. The LOV protein VIVID (VVD) of the filamentous fungus Neurospora crassa enables the organism to adapt to constant or increasing amounts of light and facilitates proper entrainment of circadian rhythms. Here, we determined the crystal structure of the fully light-adapted VVD dimer and reveal the mechanism by which light-driven conformational change alters the oligomeric state of the protein. Light-induced formation of a cysteinyl-flavin adduct generated a new hydrogen bond network that released the amino (N) terminus from the protein core and restructured an acceptor pocket for binding of the N terminus on the opposite subunit of the dimer. Substitution of residues critical for the switch between the monomeric and the dimeric states of the protein had profound effects on light adaptation in Neurospora. The mechanism of dimerization of VVD provides molecular details that explain how members of a large family of photoreceptors convert light responses to alterations in protein-protein interactions.
1728.

Optogenetic control of cells and circuits.

blue Cryptochromes Review
Annu Rev Cell Dev Biol, 1 Aug 2011 DOI: 10.1146/annurev-cellbio-100109-104051 Link to full text
Abstract: The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
1729.

A synthetic photoactivated protein to generate local or global Ca(2+) signals.

blue AsLOV2 Cos-7 HEK293 HeLa NIH/3T3 Immediate control of second messengers
Chem Biol, 29 Jul 2011 DOI: 10.1016/j.chembiol.2011.04.014 Link to full text
Abstract: Ca(2+) signals regulate diverse physiological processes through tightly regulated fluxes varying in location, time, frequency, and amplitude. Here, we developed LOVS1K, a genetically encoded and photoactivated synthetic protein to generate local or global Ca(2+) signals. With 300 ms blue light exposure, LOVS1K translocated to Orai1, a plasma membrane Ca(2+) channel, within seconds, generating a local Ca(2+) signal on the plasma membrane, and returning to the cytoplasm after tens of seconds. With repeated photoactivation, global Ca(2+) signals in the cytoplasm were generated to modulate engineered Ca(2+)-inducible proteins. Although Orai1 is typically associated with global store-operated Ca(2+) entry, we demonstrate that Orai1 can also generate local Ca(2+) influx on the plasma membrane. Our photoactivation system can be used to generate spatially and temporally precise Ca(2+) signals and to engineer synthetic proteins that respond to specific Ca(2+) signals.
1730.

Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

red Phytochromes Background
Proc Natl Acad Sci USA, 28 Jun 2011 DOI: 10.1073/pnas.1107844108 Link to full text
Abstract: Phytochromes are well-known as photoactive red- and near IR-absorbing chromoproteins with cysteine-linked linear tetrapyrrole (bilin) prosthetic groups. Phytochrome photoswitching regulates adaptive responses to light in both photosynthetic and nonphotosynthetic organisms. Exclusively found in cyanobacteria, the related cyanobacteriochrome (CBCR) sensors extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Blue/green light sensing by a well-studied subfamily of CBCRs proceeds via a photolabile thioether linkage to a second cysteine fully conserved in this subfamily. In the present study, we show that dual-cysteine photosensors have repeatedly evolved in cyanobacteria via insertion of a second cysteine at different positions within the bilin-binding GAF domain (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and formate hydrogen lyase transcription activator FhlA) shared by CBCRs and phytochromes. Such sensors exhibit a diverse range of photocycles, yet all share ground-state absorbance of near-UV to blue light and a common mechanism of light perception: reversible photoisomerization of the bilin 15,16 double bond. Using site-directed mutagenesis, chemical modification and spectroscopy to characterize novel dual-cysteine photosensors from the cyanobacterium Nostoc punctiforme ATCC 29133, we establish that this spectral diversity can be tuned by varying the light-dependent stability of the second thioether linkage. We also show that such behavior can be engineered into the conventional phytochrome Cph1 from Synechocystis sp. PCC6803. Dual-cysteine photosensors thus allow the phytochrome superfamily in cyanobacteria to sense the full solar spectrum at the earth surface from near infrared to near ultraviolet.
1731.

Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803.

violet Phytochromes Background
Proc Natl Acad Sci USA, 13 Jun 2011 DOI: 10.1073/pnas.1104242108 Link to full text
Abstract: Positive phototaxis systems have been well studied in bacteria; however, the photoreceptor(s) and their downstream signaling components that are responsible for negative phototaxis are poorly understood. Negative phototaxis sensory systems are important for cyanobacteria, oxygenic photosynthetic organisms that must contend with reactive oxygen species generated by an abundance of pigment photosensitizers. The unicellular cyanobacterium Synechocystis sp. PCC6803 exhibits type IV pilus-dependent negative phototaxis in response to unidirectional UV-A illumination. Using a reverse genetic approach, together with biochemical, molecular genetic, and RNA expression profiling analyses, we show that the cyanobacteriochrome locus (slr1212/uirS) of Synechocystis and two adjacent response regulator loci (slr1213/uirR and the PatA-type regulator slr1214/lsiR) encode a UV-A-activated signaling system that is required for negative phototaxis. We propose that UirS, which is membrane-associated via its ETR1 domain, functions as a UV-A photosensor directing expression of lsiR via release of bound UirR, which targets the lsiR promoter. Constitutive expression of LsiR induces negative phototaxis under conditions that normally promote positive phototaxis. Also induced by other stresses, LsiR thus integrates light inputs from multiple photosensors to determine the direction of movement.
1732.

Genetically engineered light sensors for control of bacterial gene expression.

blue green red Fluorescent proteins LOV domains Phytochromes Review
Biotechnol J, 7 Jun 2011 DOI: 10.1002/biot.201100091 Link to full text
Abstract: Light of different wavelengths can serve as a transient, noninvasive means of regulating gene expression for biotechnological purposes. Implementation of advanced gene regulatory circuits will require orthogonal transcriptional systems that can be simultaneously controlled and that can produce several different control states. Fully genetically encoded light sensors take advantage of the favorable characteristics of light, do not need the supplementation of any chemical inducers or co-factors, and have been demonstrated to control gene expression in Escherichia coli. Herein, we review engineered light-sensor systems with potential for in vivo regulation of gene expression in bacteria, and highlight different means of extending the range of available light input and transcriptional output signals. Furthermore, we discuss advances in multiplexing different light sensors for achieving multichromatic control of gene expression and indicate developments that could facilitate the construction of efficient systems for light-regulated, multistate control of gene expression.
1733.

The cryptochromes: blue light photoreceptors in plants and animals.

blue Cryptochromes Review Background
Annu Rev Plant Biol, 1 Jun 2011 DOI: 10.1146/annurev-arplant-042110-103759 Link to full text
Abstract: Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
1734.

Computational evidence for the role of Arabidopsis thaliana UVR8 as UV-B photoreceptor and identification of its chromophore amino acids.

UV UV receptors Background
J Chem Inf Model, 24 May 2011 DOI: 10.1021/ci200017f Link to full text
Abstract: A homology model of the Arabidopsis thaliana UV resistance locus 8 (UVR8) protein is presented herein, showing a seven-bladed β-propeller conformation similar to the globular structure of RCC1. The UVR8 amino acid sequence contains a very high amount of conserved tryptophans, and the homology model shows that seven of these tryptophans cluster at the 'top surface' of the UVR8 protein where they are intermixed with positive residues (mainly arginines) and a couple of tyrosines. Quantum chemical calculations of excitation spectra of both a large cluster model involving all twelve above-mentioned residues and smaller fragments thereof reveal that absorption maxima appearing in the 280-300 nm range for the full cluster result from interactions between the central tryptophans and surrounding arginines. This observation coincides with the published experimentally measured action spectrum for the UVR8-dependent UV-B stimulation of HY5 transcription in mature A. thaliana leaf tissue. In total these findings suggest that UVR8 has in fact in itself the ability to be an ultraviolet-B photoreceptor in plants.
1735.

Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein.

blue LOV domains Background
Proc Natl Acad Sci USA, 23 May 2011 DOI: 10.1073/pnas.1100262108 Link to full text
Abstract: Light-oxygen-voltage (LOV) domains are blue light-activated signaling modules integral to a wide range of photosensory proteins. Upon illumination, LOV domains form internal protein-flavin adducts that generate conformational changes which control effector function. Here we advance our understanding of LOV regulation with structural, biophysical, and biochemical studies of EL222, a light-regulated DNA-binding protein. The dark-state crystal structure reveals interactions between the EL222 LOV and helix-turn-helix domains that we show inhibit DNA binding. Solution biophysical data indicate that illumination breaks these interactions, freeing the LOV and helix-turn-helix domains of each other. This conformational change has a key functional effect, allowing EL222 to bind DNA in a light-dependent manner. Our data reveal a conserved signaling mechanism among diverse LOV-containing proteins, where light-induced conformational changes trigger activation via a conserved interaction surface.
1736.

Light control of plasma membrane recruitment using the Phy-PIF system.

red PhyB/PIF6 NIH/3T3
Meth Enzymol, 19 May 2011 DOI: 10.1016/b978-0-12-385075-1.00017-2 Link to full text
Abstract: The ability to control the activity of intracellular signaling processes in live cells would be an extraordinarily powerful tool. Ideally, such an intracellular input would be (i) genetically encoded, (ii) able to be turned on and off in defined temporal or spatial patterns, (iii) fast to switch between on and off states, and (iv) orthogonal to other cellular processes. The light-gated interaction between fragments of two plant proteins--termed Phy and PIF--satisfies each of these constraints. In this system, Phy can be switched between two conformations using red and infrared light, while PIF only binds one of these states. This chapter describes known constraints for designing genetic constructs using Phy and PIF and provides protocols for expressing these constructs in mammalian cells, purifying the small molecule chromophore required for the system's light responsivity, and measuring light-gated binding by microscopy.
1737.

Spatiotemporal control of small GTPases with light using the LOV domain.

blue LOV domains Review
Meth Enzymol, 11 May 2011 DOI: 10.1016/b978-0-12-385075-1.00016-0 Link to full text
Abstract: Signaling networks in living systems are coordinated through subcellular compartmentalization and precise timing of activation. These spatiotemporal aspects ensure the fidelity of signaling while contributing to the diversity and specificity of downstream events. This is studied through development of molecular tools that generate localized and precisely timed protein activity in living systems. To study the molecular events responsible for cytoskeletal changes in real time, we generated versions of Rho family GTPases whose interactions with downstream effectors is controlled by light. GTPases were grafted to the phototropin LOV (light, oxygen, or voltage) domain (Huala, E., Oeller, P. W., Liscum, E., Han, I., Larsen, E., and Briggs, W. R. (1997). Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science278, 2120-2123.) via an alpha helix on the LOV C-terminus (Wu, Y. I., Frey, D., Lungu, O. I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K. M. (2009). A genetically encoded photoactivatable Rac controls the motility of living cells. Nature461, 104-108.). The LOV domain sterically blocked the GTPase active site until it was irradiated. Exposure to 400-500nm light caused unwinding of the helix linking the LOV domain to the GTPase, relieving steric inhibition. The change was reversible and repeatable, and the protein could be returned to its inactive state simply by turning off the light. The LOV domain incorporates a flavin as the active chromophore. This naturally occurring molecule is incorporated simply upon expression of the LOV fusion in cells or animals, permitting ready control of GTPase function in different systems. In cultured single cells, light-activated Rac leads to membrane ruffling, protrusion, and migration. In collectively migrating border cells in the Drosophila ovary, focal activation of photoactivatable Rac (PA-Rac) in a single cell is sufficient to redirect the entire group. PA-Rac in a single cell also rescues the phenotype caused by loss of endogenous guidance receptor signaling in the whole group. These findings demonstrate that cells within the border cell cluster communicate and are guided collectively. Here, we describe optimization and application of PA-Rac using detailed examples that we hope will help others apply the approach to different proteins and in a variety of different cells, tissues, and organisms.
1738.

Light-dependent gene regulation by a coenzyme B12-based photoreceptor.

green Cobalamin-binding domains Background
Proc Natl Acad Sci U S A, 18 Apr 2011 DOI: 10.1073/pnas.1018972108 Link to full text
Abstract: Cobalamin (B(12)) typically functions as an enzyme cofactor but can also regulate gene expression via RNA-based riboswitches. B(12)-directed gene regulatory mechanisms via protein factors have, however, remained elusive. Recently, we reported down-regulation of a light-inducible promoter in the bacterium Myxococcus xanthus by two paralogous transcriptional repressors, of which one, CarH, but not the other, CarA, absolutely requires B(12) for activity even though both have a canonical B(12)-binding motif. Unanswered were what underlies this striking difference, what is the specific cobalamin used, and how it acts. Here, we show that coenzyme B(12) (5'-deoxyadenosylcobalamin, AdoB(12)), specifically dictates CarH function in the dark and on exposure to light. In the dark, AdoB(12)-binding to the autonomous domain containing the B(12)-binding motif foments repressor oligomerization, enhances operator binding, and blocks transcription. Light, at various wavelengths at which AdoB(12) absorbs, dismantles active repressor oligomers by photolysing the bound AdoB(12) and weakens repressor-operator binding to allow transcription. By contrast, AdoB(12) alters neither CarA oligomerization nor operator binding, thus accounting for its B(12)-independent activity. Our findings unveil a functional facet of AdoB(12) whereby it serves as the chromophore of a unique photoreceptor protein class acting in light-dependent gene regulation. The prevalence of similar proteins of unknown function in microbial genomes suggests that this distinct B(12)-based molecular mechanism for photoregulation may be widespread in bacteria.
1739.

A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms.

blue LOV domains Background
PLoS Biol, 5 Apr 2011 DOI: 10.1371/journal.pbio.1001041 Link to full text
Abstract: Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce "miniSOG" (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.
1740.

Perception of UV-B by the Arabidopsis UVR8 protein.

UV UV receptors Background
Science, 1 Apr 2011 DOI: 10.1126/science.1200660 Link to full text
Abstract: To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant monomerization of the photoreceptor and interaction with COP1, the central regulator of light signaling. Thereby this signaling cascade controlled by UVR8 mediates UV-B photomorphogenic responses securing plant acclimation and thus promotes survival in sunlight.
1741.

The short-lived signaling state of the photoactive yellow protein photoreceptor revealed by combined structural probes.

blue Fluorescent proteins Background
J Am Chem Soc, 31 Mar 2011 DOI: 10.1021/ja200617t Link to full text
Abstract: The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 Å upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations.
1742.

Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors.

blue BLUF domains LOV domains Review Background
Photochem Photobiol, 23 Mar 2011 DOI: 10.1111/j.1751-1097.2011.00913.x Link to full text
Abstract: The knowledge on the mechanisms by which blue light (BL) is sensed by diverse and numerous organisms, and of the physiological responses elicited by the BL photoreceptors, has grown remarkably during the last two decades. The basis for this "blue revival" was set by the identification and molecular characterization of long sought plant BL sensors, employing flavins as chromophores, chiefly cryptochromes and phototropins. The latter photosensors are the foundation members of the so-called light, oxygen, voltage (LOV)-protein family, largely spread among archaea, bacteria, fungi and plants. The accumulation of sequenced microbial genomes during the last years has added the BLUF (Blue Light sensing Using FAD) family to the BL photoreceptors and yielded the opportunity for intense "genome mining," which has presented to us the intriguing wealth of BL sensing in prokaryotes. In this contribution we provide an update of flavin-based BL sensors of the LOV and BLUF type, from prokaryotic microorganisms, with special emphasis to their light-activation pathways and molecular signal-transduction mechanisms. Rather than being a fully comprehensive review, this research collects the most recent discoveries and aims to unveil and compare signaling pathways and mechanisms of BL sensors.
1743.

Lights on and action! Controlling microbial gene expression by light.

blue green near-infrared red BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Appl Microbiol Biotechnol, 20 Feb 2011 DOI: 10.1007/s00253-011-3141-6 Link to full text
Abstract: Light-mediated control of gene expression and thus of any protein function and metabolic process in living microbes is a rapidly developing field of research in the areas of functional genomics, systems biology, and biotechnology. The unique physical properties of the environmental factor light allow for an independent photocontrol of various microbial processes in a noninvasive and spatiotemporal fashion. This mini review describes recently developed strategies to generate photo-sensitive expression systems in bacteria and yeast. Naturally occurring and artificial photoswitches consisting of light-sensitive input domains derived from different photoreceptors and regulatory output domains are presented and individual properties of light-controlled expression systems are discussed.
1744.

PACα--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans.

blue euPAC C. elegans in vivo Immediate control of second messengers Neuronal activity control
J Neurochem, 20 Jan 2011 DOI: 10.1111/j.1471-4159.2010.07148.x Link to full text
Abstract: Photoactivated adenylyl cyclase α (PACα) was originally isolated from the flagellate Euglena gracilis. Following stimulation by blue light it causes a rapid increase in cAMP levels. In the present study, we expressed PACα in cholinergic neurons of Caenorhabditis elegans. Photoactivation led to a rise in swimming frequency, speed of locomotion, and a decrease in the number of backward locomotion episodes. The extent of the light-induced behavioral effects was dependent on the amount of PACα that was expressed. Furthermore, electrophysiological recordings from body wall muscle cells revealed an increase in miniature post-synaptic currents during light stimulation. We conclude that the observed effects were caused by cAMP synthesis because of photoactivation of pre-synaptic PACα which subsequently triggered acetylcholine release at the neuromuscular junction. Our results demonstrate that PACα can be used as an optogenetic tool in C. elegans for straightforward in vivo manipulation of intracellular cAMP levels by light, with good temporal control and high cell specificity. Thus, using PACα allows manipulation of neurotransmitter release and behavior by directly affecting intracellular signaling.
1745.

Plate-based assays for light-regulated gene expression systems.

green red CcaS/CcaR Cph1 E. coli
Meth Enzymol, 2011 DOI: 10.1016/b978-0-12-385075-1.00015-9 Link to full text
Abstract: Light sensing proteins can be used to control living cells with exquisite precision. We have recently constructed a set of bacterial light sensors and used them to pattern gene expression across lawns of Escherichia coli with images of green and red light. The sensors can be expressed in a single cell and controlled independently by applying different light wavelengths. Both sensors also demonstrate continuous input-output behavior, where the magnitude of gene expression is proportional to the intensity of light applied. This combination of features allows complex patterns of gene expression to be programmed across an otherwise homogeneous cell population. The red light sensor has also been connected to a cell-cell communication system and several genetic logic circuits in order to program the bacterial lawn to behave as a distributed computer that performs the image-processing task of edge detection. Here, we will describe protocols for working with these systems in the laboratory.
1746.

Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions.

blue Cryptochromes Fluorescent proteins LOV domains Review
Biochemistry, 14 Dec 2010 DOI: 10.1021/bi101665s Link to full text
Abstract: Blue-light photoreceptors play a pivotal role in detecting the quality and quantity of light in the environment, controlling a wide range of biological responses. Several families of blue-light photoreceptors have been characterized in detail using biophysics and biochemistry, beginning with photon absorption, through intervening signal transduction, to regulation of biological activities. Here we review the light oxygen voltage, cryptochrome, and sensors of blue light using FAD families, three different groups of proteins that offer distinctly different modes of photochemical activation and signal transduction yet play similar roles in a vast array of biological responses. We cover mechanisms of light activation and propagation of conformational responses that modulate protein-protein interactions involved in biological signaling. Discovery and characterization of these processes in natural proteins are now allowing the design of photoregulatable engineered proteins, facilitating the generation of novel reagents for biochemical and cell biological research.
1747.

Rapid blue-light-mediated induction of protein interactions in living cells.

blue CRY2/CIB1 HEK293T S. cerevisiae
Nat Methods, 31 Oct 2010 DOI: 10.1038/nmeth.1524 Link to full text
Abstract: Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
1748.

Multichromatic control of gene expression in Escherichia coli.

green red CcaS/CcaR Cph1 E. coli Multichromatic
J Mol Biol, 28 Oct 2010 DOI: 10.1016/j.jmb.2010.10.038 Link to full text
Abstract: Light is a powerful tool for manipulating living cells because it can be applied with high resolution across space and over time. We previously constructed a red light-sensitive Escherichia coli transcription system based on a chimera between the red/far-red switchable cyanobacterial phytochrome Cph1 and the E. coli EnvZ/OmpR two-component signaling pathway. Here, we report the development of a green light-inducible transcription system in E. coli based on a recently discovered green/red photoswitchable two-component system from cyanobacteria. We demonstrate that the transcriptional output is proportional to the intensity of green light applied and that the green sensor is orthogonal to the red sensor at intensities of 532-nm light less than 0.01 W/m(2). Expression of both sensors in a single cell allows two-color optical control of transcription both in batch culture and in patterns across a lawn of engineered cells. Because each sensor functions as a photoreversible switch, this system should allow the spatial and temporal control of the expression of multiple genes through different combinations of light wavelengths. This feature aids precision single-cell and population-level studies in systems and synthetic biology.
1749.

Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications.

blue BlgC bPAC (BlaC) E. coli in vitro Immediate control of second messengers
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.177600 Link to full text
Abstract: Cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers that regulate metabolic and behavioral responses in diverse organisms. We describe purification, engineering, and characterization of photoactivated nucleotidyl cyclases that can be used to manipulate cAMP and cGMP levels in vivo. We identified the blaC gene encoding a putative photoactivated adenylyl cyclase in the Beggiatoa sp. PS genome. BlaC contains a BLUF domain involved in blue-light sensing using FAD and a nucleotidyl cyclase domain. The blaC gene was overexpressed in Escherichia coli, and its product was purified. Irradiation of BlaC in vitro resulted in a small red shift in flavin absorbance, typical of BLUF photoreceptors. BlaC had adenylyl cyclase activity that was negligible in the dark and up-regulated by light by 2 orders of magnitude. To convert BlaC into a guanylyl cyclase, we constructed a model of the nucleotidyl cyclase domain and mutagenized several residues predicted to be involved in substrate binding. One triple mutant, designated BlgC, was found to have photoactivated guanylyl cyclase in vitro. Irradiation with blue light of the E. coli cya mutant expressing BlaC or BlgC resulted in the significant increases in cAMP or cGMP synthesis, respectively. BlaC, but not BlgC, restored cAMP-dependent growth of the mutant in the presence of light. Small protein sizes, negligible activities in the dark, high light-to-dark activation ratios, functionality at broad temperature range and physiological pH, as well as utilization of the naturally occurring flavins as chromophores make BlaC and BlgC attractive for optogenetic applications in various animal and microbial models.
1750.

Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.

blue bPAC (BlaC) euPAC D. melanogaster in vivo E. coli in vitro rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.185496 Link to full text
Abstract: The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.
Submit a new publication to our database