Qr: *
Showing 1726 - 1744 of 1744 results
1726.
Synthetic biology: engineering Escherichia coli to see light.
-
Levskaya, A
-
Chevalier, AA
-
Tabor, JJ
-
Simpson, ZB
-
Lavery, LA
-
Levy, M
-
Davidson, EA
-
Scouras, A
-
Ellington, AD
-
Marcotte, EM
-
Voigt, CA
Abstract:
We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image. This spatial control of bacterial gene expression could be used to 'print' complex biological materials, for example, and to investigate signalling pathways through precise spatial and temporal control of their phosphorylation steps.
1727.
Kinetic analysis of the activation of photoactivated adenylyl cyclase (PAC), a blue-light receptor for photomovements of Euglena.
Abstract:
Photoactivated adenylyl cyclase (PAC) was first purified from a photosensing organelle (the paraflagellar body) of the unicellular flagellate Euglena gracilis, and is regarded as the photoreceptor for the step-up photophobic response. Here, we report the kinetic properties of photoactivation of PAC and a change in intracellular cAMP levels upon blue light irradiation. Activation of PAC was dependent both on photon fluence rate and duration of irradiation, between which reciprocity held well in the range of 2--50 micromol m(-2) s(-1)(total fluence of 1200 micromol m(-2)). Intermittent irradiation also caused activation of PAC in a photon fluence-dependent manner irrespective of cycle periods. Wavelength dependency of PAC activation showed prominent peaks in the UV-B/C, UV-A and blue regions of the spectrum. The time course of the changes in intracellular cAMP levels corresponded well with that of the step-up photophobic response. From this and the kinetic properties of PAC photoactivation, we concluded that an increase in intracellular cAMP levels evoked by photoactivation of PAC is a key event of the step-up photophobic response.
1728.
Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity.
Abstract:
Light plays a crucial role in activating phototropins, a class of plant photoreceptors that are sensitive to blue and UV-A wavelengths. Previous studies indicated that phototropin uses a bound flavin mononucleotide (FMN) within its light-oxygen-voltage (LOV) domain to generate a protein-flavin covalent bond under illumination. In the C-terminal LOV2 domain of Avena sativa phototropin 1, formation of this bond triggers a conformational change that results in unfolding of a helix external to this domain called Jalpha [Harper, S. M., et al. (2003) Science 301, 1541-1545]. Though the structural effects of illumination were characterized, it was unknown how these changes are coupled to kinase activation. To examine this, we made a series of point mutations along the Jalpha helix to disrupt its interaction with the LOV domain in a manner analogous to light activation. Using NMR spectroscopy and limited proteolysis, we demonstrate that several of these mutations displace the Jalpha helix from the LOV domain independently of illumination. When placed into the full-length phototropin protein, these point mutations display constitutive kinase activation, without illumination of the sample. These results indicate that unfolding of the Jalpha helix is the critical event in regulation of kinase signaling for the phototropin proteins.
1729.
VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation.
Abstract:
Blue light regulates many physiological and developmental processes in fungi. Most of the blue light responses in the ascomycete Neurospora crassa are dependent on the two blue light regulatory proteins White Collar (WC)-1 and -2. WC-1 has recently been shown to be the first fungal blue light photoreceptor. In the present study, we characterize the Neurospora protein VIVID. VIVID shows a partial sequence similarity with plant blue light photoreceptors. In addition, we found that VIVID non-covalently binds a flavin chromophore. Upon illumination with blue light, VIVID undergoes a photocycle indicative of the formation of a flavin-cysteinyl adduct. VVD is localized in the cytoplasm and is only present after light induction. A loss-of-function vvd mutant was insensitive to increases in light intensities. Furthermore, mutational analysis of the photoactive cysteine indicated that the formation of a flavin-cysteinyl adduct is essential for VIVID functions in vivo. Our results show that VIVID is a second fungal blue light photoreceptor which enables Neurospora to perceive and respond to daily changes in light intensity.
1730.
Structural basis of a phototropin light switch.
Abstract:
Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.
1731.
The LOV domain family: photoresponsive signaling modules coupled to diverse output domains.
Abstract:
For single-cell and multicellular systems to survive, they must accurately sense and respond to their cellular and extracellular environment. Light is a nearly ubiquitous environmental factor, and many species have evolved the capability to respond to this extracellular stimulus. Numerous photoreceptors underlie the activation of light-sensitive signal transduction cascades controlling these responses. Here, we review the properties of the light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains, a subset of the Per-ARNT-Sim (PAS) superfamily. These flavin-binding domains, first identified in the higher-plant phototropins, are now shown to be present in plants, fungi, and bacteria. Notably, LOV domains are coupled to a wide array of other domains, including kinases, phosphodiesterases, F-box domains, STAS domains, and zinc fingers, which suggests that the absorption of blue light by LOV domains regulates the activity of these structurally and functionally diverse domains. LOV domains contain a conserved molecular volume extending from the flavin cofactor, which is the locus for light-driven structural change, to the molecular surface. We discuss the role of this conserved volume of structure in LOV-regulated processes.
1732.
BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms.
Abstract:
A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
1733.
A light-switchable gene promoter system.
Abstract:
Regulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes. Most of these rely on the administration of either exogenous chemicals or heat shock. Despite the general success of many of these systems, the potential for problems, such as toxic, unintended, or pleiotropic effects of the inducing chemical or treatment, can impose limitations on their use. We have developed a promoter system that can be induced, rapidly and reversibly, by short pulses of light. This system is based on the known red light-induced binding of the plant photoreceptor phytochrome to the protein PIF3 and the reversal of this binding by far-red light. We show here that yeast cells expressing two chimeric proteins, a phytochrome-GAL4-DNA-binding-domain fusion and a PIF3-GAL4-activation-domain fusion, are induced by red light to express selectable or "scorable" marker genes containing promoters with a GAL4 DNA-binding site, and that this induction is rapidly abrogated by subsequent far-red light. We further show that the extent of induction can be controlled precisely by titration of the number of photons delivered to the cells by the light pulse. Thus, this system has the potential to provide rapid, noninvasive, switchable control of the expression of a desired gene to a preselected level in any suitable cell by simple exposure to a light signal.
1734.
Phototropins: a new family of flavin-binding blue light receptors in plants.
Abstract:
Phototropin is the designation originally assigned to a recently characterized chromoprotein that serves as a photoreceptor for phototropism. Phototropin is a light-activated autophosphorylating serine/threonine kinase that binds two flavin mononucleotide (FMN) molecules that function as blue light-absorbing chromophores. Each FMN molecule is bound in a rigid binding pocket within specialized PAS (PER-ARNT-SIM superfamily) domains, known as LOV (light, oxygen, or voltage) domains. This article reviews the detailed photobiological and biochemical characterization of the light-activated phosphorylation reaction of phototropin and follows the sequence of events leading to the cloning, sequencing, and characterization of the gene and the subsequent biochemical characterization of its encoded protein. It then considers recent biochemical and photochemical evidence that light activation of phototropin involves the formation of a cysteinyl adduct at the C(4a) position of the FMN chromophores. Adduct formation causes a major conformational change in the chromophores and a possible conformational change in the protein moiety as well. The review concludes with a brief discussion of the evidence for a second phototropin-like protein in Arabidopsis and rice. Possible roles for this photoreceptor are discussed.
1735.
Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.
Abstract:
The signaling pathways by which the phytochrome (phy) family of photoreceptors transmits sensory information to light-regulated genes remain to be fully defined. Evidence for a relatively direct pathway has been provided by the binding of one member of the family, phyB, to a promoter-element-bound, basic helix-loop-helix protein, PIF3, specifically upon light-induced conversion of the photoreceptor molecule to its biologically active conformer (Pfr). Here, we show that phyA also binds selectively and reversibly to PIF3 upon photoconversion to Pfr, but that the apparent affinity of PIF3 for phyA is 10-fold lower than for phyB. This result is consistent with previous in vivo data from PIF3-deficient Arabidopsis, indicating that PIF3 has a major role in phyB signaling, but a more minor role in phyA signaling. We also show that phyB binds stoichiometrically to PIF3 at an equimolar ratio, suggesting that the resultant complex is the unit active in transcriptional regulation at target promoters. Deletion mapping suggests that a 37-aa segment present at the N terminus of phyB, but absent from phyA, contributes strongly to the high binding affinity of phyB for PIF3. Conversely, deletion mapping and point mutation analysis of PIF3 for determinants involved in recognition of phyB indicates that the PAS domain of PIF3 is a major contributor to this interaction, but that a second determinant in the C-terminal domain is also necessary.
1736.
Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light.
Abstract:
The phytochrome photoreceptor family directs plant gene expression by switching between biologically inactive and active conformers in response to the sequential absorption of red and farred photons. Several intermediates that act late in the phytochrome signalling pathway have been identified, but fewer have been identified that act early in the pathway. We have cloned a nuclear basic helix-loop-helix protein, PIF3, which can bind to non-photoactive carboxy-terminal fragments of phytochromes A and B and functions in phytochrome signalling in vivo. Here we show that full-length photoactive phytochrome B binds PIF3 in vitro only upon light-induced conversion to its active form, and that photoconversion back to its inactive form causes dissociation from PIF3. We conclude that photosensory signalling by phytochrome B involves light-induced, conformer-specific recognition of the putative transcriptional regulator PIF3, providing a potential mechanism for direct photoregulation of gene expression.
1737.
Divalent cation-induced aggregation of chromaffin granule membranes.
Abstract:
Divalent cations induce the aggregation of chromaffin granule ghosts (CG membranes) at millimolar concentrations. Monovalent cations produce the same effect at 100-fold higher concentrations. The kinetics of the dimerization phase were followed by light-scattering changes observed in stopped-flow rapid mixing experiments. The rate constant for Ca2+-induced dimerization (kapp) is 0.86-1.0 x 10(9) M-1sec-1, based on the "molar" vesicle concentration. This value is close to the values predicted by theory for the case of diffusion-controlled reaction (7.02 x 10(9) M-1sec-1), indicating that there is no energy barrier to dimerization. Arrhenius plots between 10 degrees and 42 degrees C support this; the activation energy observed, +4.4 Kcal, is close to the value (4.6-4.8 Kcal) predicted for diffusion control according to theory. Artificial vesicles prepared from CG lipids were also found to have cation-induced aggregation, but the rates (values of kapp) were less than 1/100 as large as those with native CG membranes. Also, significant differences were found with respect to cation specificity. It is concluded that the slow rates are due to the low probability that the segments of membrane which approach will be matched in polar head group composition and disposition. Thus large numbers of approaches are necessary before matched segments come into aposition. The salient features of the chromaffin granule membrane aggregation mechanism are as follows: (a) In the absence of cations capable of shielding and binding, the membranes are held apart by electrostatic repulsion of their negatively charged surfaces. (b) The divalent and monovalent cation effects on aggregation are due to their ability to shield these charges, allowing a closer approach of the membrane surfaces. (c) The major determinants of the aggregation rates of CG membranes are proteins which protrude from the (phospholipid) surface of the membrane and serve as points of primary contact. Transmembrane contact between these proteins does not require full neutralization of the surface charge and surface potential arising from the negatively charged phospholipids. (d) After contact between proteins is established, the interaction between membranes can be strengthened through transmembrane hydrogen bonding of phosphatidyl ethanolamine polar head groups, divalent cation-mediated salt bridging, and segregation of phosphatidylcholine out of the region of contact.
1738.
Nursing diagnosis of drug incompatibility: a conceptual process.
Abstract:
Abstract not available.
1739.
Traumatic occlusion of internal carotid artery in an infant.
Abstract:
A case of an 11-months-old girl with traumatic occlusion of supraclinoid portion of internal carotid artery is reported. The patient died about 22 hours after the craniocerebral trauma.
1740.
Activity and longevity of insect growth regulators against mosquitoes.
Abstract:
Abstract not available.
1741.
A comparison of the substrate specificities of endo-beta-N-acetylglucosaminidases from Streptomyces griseus and Diplococcus Pneumoniae.
Abstract:
Abstract not available.
1742.
Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution.
Abstract:
Abstract not available.
1743.
Pharmacological properties of new neuroleptic compounds.
Abstract:
RMI 61 140, RMI 61 144 and RMI 61 280 are newly synthetized N-[8-R-dibenzo(b,f)oxepin-10-yl]-N'-methyl-piperazine-maleates which show interesting psychopharmacologic effects. This work contains the results of a study performed with these three compounds, in order to demonstrate their neuropsycholeptic activity in comparison with chloropromazine (CPZ) and chlordiazepoxide (CPD). The inhibition of motility observed in mice shows that the compounds reduce the normal spontaneous motility as well as the muscle tone. The central-depressant activity is evidenced by increased barbiturate-induced sleep and a remarkable eyelid ptosis can also be observed. Our compounds do not show any activity on electroshock just as do CPZ and CPD. As to the antipsychotic outline, our compounds show strong reduction of lethality due to amphetamine in grouped mice and a strong antiapomorphine activity. They show also an antiaggressive effect and an inhibitory activity on avoidance behaviour much stronger than CPZ. We have also found extrapyramidal effects, as catalepsy, common to many tranquillizers of the kind of the standards used by us. As for vegetative phenomena, the compounds show hypotensive dose related action ranging from moderate to strong, probably due to an a-receptor inhibition. Adrenolytic activity against lethal doses of adrenaline, antiserotonin and antihistaminic effects, as well as other actions (hypothermia, analgesia, etc.) confirm that RMI 61 140, RMI 61 144 and RMI 61 280 are endowed with pharmacologic properties similar and more potent than those of CPZ. Studies on the metabolism of brain catecholamines show that they are similar to CPZ, although with less effect on dopamine level.
1744.
Editorial: "Old lamps for new".
Abstract:
Abstract not available.