Showing 151 - 175 of 236 results
151.
Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.
Abstract:
Transcriptional regulation is a useful strategy for gene therapy and for biomedical research. Unlike chemically regulated transcriptional approaches, spatiotemporal control of transcription using optogenetic tools is a powerful technology for the analysis of single cells. For light to penetrate into tissues, it is desired to use photoreceptors absorbing red/far-red light with a low-molecular mass applicable for the use of virus vectors, and a photoswitch using the photoreceptor need to be constructed as a single expression vector. Herein, we describe an optogenetic tool based on Arabidopsis thaliana phytochrome (Phy) B and its binding partner, phytochrome-interacting factor (PIF) 6. We generated a truncated PhyB, which allowed for reversible association with PIF6 by red/far-red light illumination. The red light illumination only for 5 min induced PhyB translocation from cytoplasm into the nucleus by the association with PIF6, resulting in transcriptional activation based on Gal4 DNA-binding domain and the upstream activating sequence of Gal system. The nucleocytoplasmic shuttling vector using PhyB and PIF6 might be applicable for transcriptional regulation in tissue experiments. This article is protected by copyright. All rights reserved.
152.
L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
Abstract:
The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a light-controlled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome re-engineering project Sc2.0 or in other recombination-based systems.
153.
Optogenetic regulation of transcription.
-
Polesskaya, O
-
Baranova, A
-
Bui, S
-
Kondratev, N
-
Kananykhina, E
-
Nazarenko, O
-
Shapiro, T
-
Barg Nardia, F
-
Kornienko, V
-
Chandhoke, V
-
Stadler, I
-
Lanzafame, R
-
Myakishev‑Rempel, M
Abstract:
Optogenetics has become widely recognized for its success in real-time control of brain neurons by utilizing nonmammalian photosensitive proteins to open or close membrane channels. Here we review a less well known type of optogenetic constructs that employs photosensitive proteins to transduce the signal to regulate gene transcription, and its possible use in medicine. One of the problems with existing gene therapies is that they could remain active indefnitely while not allowing regulated transgene production on demand. Optogenetic regulation of transcription (ORT) could potentially be used to regulate the production of a biological drug in situ, by repeatedly applying light to the tissue, and inducing expression of therapeutic transgenes when needed. Red and near infrared wavelengths, which are capable of penetration into tissues, have potential for therapeutic applications. Existing ORT systems are reviewed herein with these considerations in mind.
154.
Optogenetics: A Primer for Chemists.
Abstract:
The field of optogenetics uses genetically encoded, light-responsive proteins to control physiological processes. This technology has been hailed as the one of the ten big ideas in brain science in the past decade,[1] the breakthrough of the decade,[2] and the method of the year in 2010[3] and again in 2014[4]. The excitement evidenced by these proclamations is confirmed by a couple of impressive numbers. The term "optogenetics" was coined in 2006.[5] As of December 2017, "optogenetics" is found in the title or abstract of almost 1600 currently funded National Institutes of Health grants. In addition, nearly 600 reviews on optogenetics have appeared since 2006, which averages out to approximately one review per week! However, in spite of these impressive numbers, the potential applications and implications of optogenetics are not even close to being fully realized. This is due, in large part, to the challenges associated with the design of optogenetic analogs of endogenous proteins. This review is written from a chemist's perspective, with a focus on the molecular strategies that have been developed for the construction of optogenetic proteins.
155.
New approaches for solving old problems in neuronal protein trafficking.
Abstract:
Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision.
156.
Synthetic Biology Makes Polymer Materials Count.
Abstract:
Synthetic biology applies engineering concepts to build cellular systems that perceive and process information. This is achieved by assembling genetic modules according to engineering design principles. Recent advance in the field has contributed optogenetic switches for controlling diverse biological functions in response to light. Here, the concept is introduced to apply synthetic biology switches and design principles for the synthesis of multi-input-processing materials. This is exemplified by the synthesis of a materials system that counts light pulses. Guided by a quantitative mathematical model, functional synthetic biology-derived modules are combined into a polymer framework resulting in a biohybrid materials system that releases distinct output molecules specific to the number of input light pulses detected. Further demonstration of modular extension yields a light pulse-counting materials system to sequentially release different enzymes catalyzing a multistep biochemical reaction. The resulting smart materials systems can provide novel solutions as integrated sensors and actuators with broad perspectives in fundamental and applied research.
157.
Induction of signal transduction using non-channelrhodopsin-type optogenetic tools.
Abstract:
Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity in cells, tissues, and organs in animals with high spatial and temporal precision. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review, we summarize recent advances in the development of such photoswitches and how these optotools are applied to signaling processes.
158.
CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control.
Abstract:
In a swift revolution, CRISPR/Cas9 has reshaped the means and ease of interrogating biological questions. Particularly, mutants that result in a nuclease-deactivated Cas9 (dCas9) provide scientists with tools to modulate transcription of genomic loci at will by targeting transcriptional effector domains. To interrogate the temporal order of events during transcriptional regulation, rapidly inducible CRISPR/dCas9 systems provide previously unmet molecular tools. In only a few years of time, numerous light and chemical-inducible switches have been applied to CRISPR/dCas9 to generate dCas9 switches. As these inducible switch systems are able to modulate dCas9 directly at the protein level, they rapidly affect dCas9 stability, activity, or target binding and subsequently rapidly influence downstream transcriptional events. Here we review the current state of such biotechnological CRISPR/dCas9 enhancements. Specifically we provide details on their flaws and strengths and on the differences in molecular design between the switch systems. With this we aim to provide a selection guide for researchers with keen interest in rapid temporal control over transcriptional modulation through the CRISPR/dCas9 system.
159.
Optogenetically controlled protein kinases for regulation of cellular signaling.
Abstract:
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
160.
Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics.
-
Kyriakakis, P
-
Catanho, M
-
Hoffner, N
-
Thavarajah, W
-
Jian-Yu, V
-
Chao, SS
-
Hsu, A
-
Pham, V
-
Naghavian, L
-
Dozier, LE
-
Patrick, G
-
Coleman, T
Abstract:
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics, is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and for the first time, combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
161.
Optogenetic tools for cell biological applications.
Abstract:
Abstract not available.
162.
Illuminating information transfer in signaling dynamics by optogenetics.
Abstract:
Cells receive diverse signaling cues from their environment that trigger cascades of biochemical reactions in a dynamic manner. Single-cell imaging technologies have revealed that not only molecular species but also dynamic patterns of signaling inputs determine the fates of signal-receiving cells; however it has been challenging to elucidate how such dynamic information is delivered and decoded in complex networks of inter-cellular and inter-molecular interactions. The recent development of optogenetic technology with photo-sensitive proteins has changed this situation; the combination of microscopy and optogenetics provides fruitful insights into the mechanism of dynamic information processing at the single-cell level. Here, we review recent efforts to visualize the flows of dynamic patterns in signaling pathways, which utilize methods integrating single-cell imaging and optogenetics.
163.
Emerging approaches for spatiotemporal control of targeted genome with inducible CRISPR-Cas9.
Abstract:
The breakthrough CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) nuclease has revolutionized our ability in genome engineering. Although Cas9 is already a powerful tool for simple and efficient target endogenous gene manipulation, further engineering of Cas9 will improve the performance of Cas9, such as gene-editing efficiency and accuracy in vivo, and expand the application possibility of this Cas9 technology. The emerging inducible Cas9 methods, which can control the activity of Cas9 using an external stimulus such as chemicals and light, have the potential to provide spatiotemporal gene manipulation in user-defined cell population at a specific time and improve the accuracy of Cas9-mediated genome editing. In this review, we focus on the recent advance in inducible Cas9 technologies, especially light-inducible Cas9, and related methodologies, and also discuss future directions of this emerging tools.
164.
Cell membrane dynamics induction using optogenetic tools.
Abstract:
Structures arising from actin-based cell membrane movements, including ruffles, lamellipodia, and filopodia, play important roles in a broad spectrum of cellular functions, such as cell motility, axon guidance in neurons, wound healing, and micropinocytosis. Previous studies investigating these cell membrane dynamics often relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies did not allow the modulation of protein activity at specific regions of cells, tissues, and organs in animals with high spatial and temporal precision. Recently, optogenetic tools for inducing cell membrane dynamics have been developed which address several of the disadvantages of previous techniques. In a recent study, we developed a powerful optogenetic tool, called the Magnet system, to change cell membrane dynamics through Tiam1 and PIP3 signal transductions with high spatial and temporal resolution. In this review, we summarize recent advances in optogenetic tools that allow us to induce actin-regulated cell membrane dynamics and unique membrane ruffles that we discovered using our Magnet system.
165.
Optogenetic Tools for Subcellular Applications in Neuroscience.
Abstract:
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
166.
Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.
Abstract:
Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
167.
Applications of optobiology in intact cells and multi-cellular organisms.
Abstract:
Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
168.
Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells.
Abstract:
Our knowledge of pluripotent stem cell biology has advanced considerably in the past four decades, but it has yet to deliver on the great promise of regenerative medicine. The slow progress can be mainly attributed to our incomplete understanding of the complex biologic processes regulating the dynamic developmental pathways from pluripotency to fully-differentiated states of functional somatic cells. Much of the difficulty arises from our lack of specific tools to query, or manipulate, the molecular scale circuitry on both single-cell and organismal levels. Fortunately, the last two decades of progress in the field of optogenetics have produced a variety of genetically encoded, light-mediated tools that enable visualization and control of the spatiotemporal regulation of cellular function. The merging of optogenetics and pluripotent stem cell biology could thus be an important step toward realization of the clinical potential of pluripotent stem cells. In this review, we have surveyed available genetically encoded photoactuators and photosensors, a rapidly expanding toolbox, with particular attention to those with utility for studying pluripotent stem cells.
169.
Tracing Information Flow from Erk to Target Gene Induction Reveals Mechanisms of Dynamic and Combinatorial Control.
Abstract:
Cell signaling networks coordinate specific patterns of protein expression in response to external cues, yet the logic by which signaling pathway activity determines the eventual abundance of target proteins is complex and poorly understood. Here, we describe an approach for simultaneously controlling the Ras/Erk pathway and monitoring a target gene’s transcription and protein accumulation in single live cells. We apply our approach to dissect how Erk activity is decoded by immediate early genes (IEGs). We find that IEG transcription decodes Erk dynamics through a shared band-pass filtering circuit; repeated Erk pulses transcribe IEGs more efficiently than sustained Erk inputs. However, despite highly similar transcriptional responses, each IEG exhibits dramatically different protein-level accumulation, demonstrating a high degree of post-transcriptional regulation by combinations of multiple pathways. Our results demonstrate that the Ras/Erk pathway is decoded by both dynamic filters and logic gates to shape target gene responses in a context-specific manner.
170.
PhiReX: a programmable and red light-regulated protein expression switch for yeast.
Abstract:
Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.
171.
Optogenetic Control of Ras/Erk Signaling Using the Phy-PIF System.
Abstract:
The Ras/Erk signaling pathway plays a central role in diverse cellular processes ranging from development to immune cell activation to neural plasticity to cancer. In recent years, this pathway has been widely studied using live-cell fluorescent biosensors, revealing complex Erk dynamics that arise in many cellular contexts. Yet despite these high-resolution tools for measurement, the field has lacked analogous tools for control over Ras/Erk signaling in live cells. Here, we provide detailed methods for one such tool based on the optical control of Ras activity, which we call "Opto-SOS." Expression of the Opto-SOS constructs can be coupled with a live-cell reporter of Erk activity to reveal highly quantitative input-to-output maps of the pathway. Detailed herein are protocols for expressing the Opto-SOS system in cultured cells, purifying the small molecule cofactor necessary for optical stimulation, imaging Erk responses using live-cell microscopy, and processing the imaging data to quantify Ras/Erk signaling dynamics.
172.
Interactions Between phyB and PIF Proteins Alter Thermal Reversion Reactions in vitro.
Abstract:
The dynamic behavior of the plant red/far-red light photoreceptor phytochrome B (phyB) has been elucidated in natural and synthetic systems. Red light switches phyB from the inactive Pr state to the active Pfr state, a process that is reversed by far-red light. Alongside light signals, phyB activity is constrained by thermal reversion (that is prominent in the dark) and protein-protein interactions between phyB, other phytochrome molecules, and, among others, PHYTOCHROME INTERACTING FACTORs (PIFs). Requirements for phyB-PIF association have been well studied and are central to light-regulated synthetic tools. However, it is unknown whether PIF interactions influence transitions of phyB between different conformers. Here, we show that the in vitro thermal reversion of phyB involves multiple reactions. Thermal reversion of phyB in vitro is inhibited by PIF6, and this effect is observed at all temperatures tested. We analyzed our experimental data using a mathematical model containing multiple Pfr conformers, in accordance with previous findings. Remarkably, each Pfr conformer is differentially regulated by PIF6 and temperature. As a result, we speculate that in vivo phytochrome signaling networks may require similar levels of complexity to fine-tune responses to the external environment.
173.
A module for Rac temporal signal integration revealed with optogenetics.
Abstract:
Sensory systems use adaptation to measure changes in signaling inputs rather than absolute levels of signaling inputs. Adaptation enables eukaryotic cells to directionally migrate over a large dynamic range of chemoattractant. Because of complex feedback interactions and redundancy, it has been difficult to define the portion or portions of eukaryotic chemotactic signaling networks that generate adaptation and identify the regulators of this process. In this study, we use a combination of optogenetic intracellular inputs, CRISPR-based knockouts, and pharmacological perturbations to probe the basis of neutrophil adaptation. We find that persistent, optogenetically driven phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production results in only transient activation of Rac, a hallmark feature of adaptive circuits. We further identify the guanine nucleotide exchange factor P-Rex1 as the primary PIP3-stimulated Rac activator, whereas actin polymerization and the GTPase-activating protein ArhGAP15 are essential for proper Rac turnoff. This circuit is masked by feedback and redundancy when chemoattractant is used as the input, highlighting the value of probing signaling networks at intermediate nodes to deconvolve complex signaling cascades.
174.
At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior.
Abstract:
Cells are bombarded by extrinsic signals that dynamically change in time and space. Such dynamic variations can exert profound effects on behaviors, including cellular signaling, organismal development, stem cell differentiation, normal tissue function, and disease processes such as cancer. Although classical genetic tools are well suited to introduce binary perturbations, new approaches have been necessary to investigate how dynamic signal variation may regulate cell behavior. This fundamental question is increasingly being addressed with optogenetics, a field focused on engineering and harnessing light-sensitive proteins to interface with cellular signaling pathways. Channelrhodopsins initially defined optogenetics; however, through recent use of light-responsive proteins with myriad spectral and functional properties, practical applications of optogenetics currently encompass cell signaling, subcellular localization, and gene regulation. Now, important questions regarding signal integration within branch points of signaling networks, asymmetric cell responses to spatially restricted signals, and effects of signal dosage versus duration can be addressed. This review summarizes emerging technologies and applications within the expanding field of optogenetics.
175.
Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.
Abstract:
Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green-type CBCR GAF domains that photoconvert between red- (Pr) and green-absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green-type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr-to-Pg photoconversion and rapid Pg-to-Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site-directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300-fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2-AC, AnPixJg4-AC and AnPixJg2_DR6-AC. We detected successful enzymatic activation under red light for both AnPixJg2-AC and AnPixJg2_DR6-AC, and repression under green light for AnPixJg2-AC and under dark incubation for AnPixJg2_DR6-AC. These results provide platforms to develop cAMP synthetic optogenetic tools.