Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 151 - 175 of 300 results
151.

Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.

red PhyB/PIF6 zebrafish in vivo
Methods Mol Biol, 9 Feb 2019 DOI: 10.1007/978-1-4939-9009-2_10 Link to full text
Abstract: This chapter describes the use of optogenetic heterodimerization in single cells within whole-vertebrate embryos. This method allows the use of light to reversibly bind together an "anchor" protein and a "bait" protein. Proteins can therefore be directed to specific subcellular compartments, altering biological processes such as cell polarity and signaling. I detail methods for achieving transient expression of fusion proteins encoding the phytochrome heterodimerization system in early zebrafish embryos (Buckley et al., Dev Cell 36(1):117-126, 2016) and describe the imaging parameters used to achieve subcellular light patterning.
152.

Cell-machine interfaces for characterizing gene regulatory network dynamics.

green red Phytochromes Review
Curr Opin Syst Biol, 1 Feb 2019 DOI: 10.1016/j.coisb.2019.01.001 Link to full text
Abstract: Gene regulatory networks and the dynamic responses they produce offer a wealth of information about how biological systems process information about their environment. Recently, researchers interested in dissecting these networks have been outsourcing various parts of their experimental workflow to computers. Here we review how, using microfluidic or optogenetic tools coupled with fluorescence imaging, it is now possible to interface cells and computers. These platforms enable scientists to perform informative dynamic stimulations of genetic pathways and monitor their reaction. It is also possible to close the loop and regulate genes in real time, providing an unprecedented view of how signals propagate through the network. Finally, we outline new tools that can be used within the framework of cell-machine interfaces.
153.

Synthetic switches and regulatory circuits in plants.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
Plant Physiol, 28 Jan 2019 DOI: 10.1104/pp.18.01362 Link to full text
Abstract: Synthetic biology is an established but ever-growing interdisciplinary field of research currently revolutionizing biomedicine studies and the biotech industry. The engineering of synthetic circuitry in bacterial, yeast, and animal systems prompted considerable advances for the understanding and manipulation of genetic and metabolic networks; however, their implementation in the plant field lags behind. Here, we review theoretical-experimental approaches to the engineering of synthetic chemical- and light-regulated (optogenetic) switches for the targeted interrogation and control of cellular processes, including existing applications in the plant field. We highlight the strategies for the modular assembly of genetic parts into synthetic circuits of different complexity, ranging from Boolean logic gates and oscillatory devices up to semi- and fully synthetic open- and closed-loop molecular and cellular circuits. Finally, we explore potential applications of these approaches for the engineering of novel functionalities in plants, including understanding complex signaling networks, improving crop productivity, and the production of biopharmaceuticals.
154.

Perspective Tools for Optogenetics and Photopharmacology: From Design to Implementation.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Prog Photon Sci, 24 Jan 2019 DOI: 10.1007/978-3-030-05974-3_8 Link to full text
Abstract: Optogenetics and photopharmacology are two perspective modern methodologies for control and monitoring of biological processes from an isolated cell to complex cell assemblies and organisms. Both methodologies use optically active components that being introduced into the cells of interest allow for optical control or monitoring of different cellular processes. In optogenetics, genetic materials are introduced into the cells to express light-sensitive proteins or protein constructs. In photopharmacology, photochromic compounds are delivered into a cell directly but not produced inside the cell from a genetic material. The development of both optogenetics and photopharmacology is inseparable from the design of improved tools (protein constructs or organic molecules) optimized for specific applications. Herein, we review the main tools that are used in modern optogenetics and photopharmaclogy and describe the types of cellular processes that can be controlled by these tools. Although a large number of different kinds of optogenetic tools exist, their performance can be evaluated with a limited number of metrics that have to be optimized for specific applications.We classify thesemetrics and describe the ways of their improvement.
155.

Optogenetic control of integrin-matrix interaction.

red PhyB/PIF6 HEK293T HeLa MCF7 Signaling cascade control Control of cell-cell / cell-material interactions Extracellular optogenetics
Commun Biol, 8 Jan 2019 DOI: 10.1038/s42003-018-0264-7 Link to full text
Abstract: Optogenetic approaches have gathered momentum in precisely modulating and interrogating cellular signalling and gene expression. The use of optogenetics on the outer cell surface to interrogate how cells receive stimuli from their environment, however, has so far not reached its full potential. Here we demonstrate the development of an optogenetically regulated membrane receptor-ligand pair exemplified by the optically responsive interaction of an integrin receptor with the extracellular matrix. The system is based on an integrin engineered with a phytochrome-interacting factor domain (OptoIntegrin) and a red light-switchable phytochrome B-functionalized matrix (OptoMatrix). This optogenetic receptor-ligand pair enables light-inducible and -reversible cell-matrix interaction, as well as the controlled activation of downstream mechanosensory signalling pathways. Pioneering the application of optogenetic switches in the extracellular environment of cells, this OptoMatrix–OptoIntegrin system may serve as a blueprint for rendering matrix–receptor interactions amendable to precise control with light.
156.

A size-invariant bud-duration timer enables robustness in yeast cell size control.

red PhyB/PIF6 S. cerevisiae Cell cycle control
PLoS ONE, 21 Dec 2018 DOI: 10.1371/journal.pone.0209301 Link to full text
Abstract: Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant 'timer' specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.
157.

Using Synthetic Biology to Engineer Spatial Patterns.

blue green red Cryptochromes LOV domains Phytochromes Review
Adv Biosyst, 17 Dec 2018 DOI: 10.1002/adbi.201800280 Link to full text
Abstract: Synthetic biology has emerged as a multidisciplinary field that provides new tools and approaches to address longstanding problems in biology. It integrates knowledge from biology, engineering, mathematics, and biophysics to build—rather than to simply observe and perturb—biological systems that emulate natural counterparts or display novel properties. The interface between synthetic and developmental biology has greatly benefitted both fields and allowed to address questions that would remain challenging with classical approaches due to the intrinsic complexity and essentiality of developmental processes. This Progress Report provides an overview of how synthetic biology can help to understand a process that is crucial for the development of multicellular organisms: pattern formation. It reviews the major mechanisms of genetically encoded synthetic systems that have been engineered to establish spatial patterns at the population level. Limitations, challenges, applications, and potential opportunities of synthetic pattern formation are also discussed.
158.

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.

blue cyan red Cryptochromes FKF1/G1 Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 14 Dec 2018 DOI: 10.3390/ijms19124052 Link to full text
Abstract: Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
159.

Programming Bacteria With Light—Sensors and Applications in Synthetic Biology

blue cyan green near-infrared red UV violet Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Microbiol, 8 Nov 2018 DOI: 10.3389/fmicb.2018.02692 Link to full text
Abstract: Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
160.

Bringing Light to Transcription: The Optogenetics Repertoire.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Front Genet, 2 Nov 2018 DOI: 10.3389/fgene.2018.00518 Link to full text
Abstract: The ability to manipulate expression of exogenous genes in particular regions of living organisms has profoundly transformed the way we study biomolecular processes involved in both normal development and disease. Unfortunately, most of the classical inducible systems lack fine spatial and temporal accuracy, thereby limiting the study of molecular events that strongly depend on time, duration of activation, or cellular localization. By exploiting genetically engineered photo sensing proteins that respond to specific wavelengths, we can now provide acute control of numerous molecular activities with unprecedented precision. In this review, we present a comprehensive breakdown of all of the current optogenetic systems adapted to regulate gene expression in both unicellular and multicellular organisms. We focus on the advantages and disadvantages of these different tools and discuss current and future challenges in the successful translation to more complex organisms.
161.

Light-Induced Printing of Protein Structures on Membranes in Vitro.

red PhyB/PIF6 in vitro Extracellular optogenetics
Nano Lett, 10 Oct 2018 DOI: 10.1021/acs.nanolett.8b03187 Link to full text
Abstract: Reconstituting functional modules of biological systems in vitro is an important yet challenging goal of bottom-up synthetic biology, in particular with respect to their precise spatiotemporal regulation. One of the most desirable external control parameters for the engineering of biological systems is visible light, owing to its specificity and ease of defined application in space and time. Here we engineered the PhyB-PIF6 system to spatiotemporally target proteins by light onto model membranes and thus sequentially guide protein pattern formation and structural assembly in vitro from the bottom up. We show that complex micrometer-sized protein patterns can be printed on time scales of seconds, and the pattern density can be precisely controlled by protein concentration, laser power, and activation time. Moreover, when printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ, the targeted assembly into filaments and large-scale structures such as artificial rings can be accomplished. Thus, light mediated sequential protein assembly in cell-free systems represents a promising approach to hierarchically building up the next level of complexity toward a minimal cell.
162.

Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Cold Spring Harb Perspect Med, 5 Oct 2018 DOI: 10.1101/cshperspect.a034371 Link to full text
Abstract: Gene- and cell-based therapies are well recognized as central pillars of next-generation medicine, but controllability remains a critical issue for clinical applications. In this context, optogenetics is opening up exciting new opportunities for precision-guided medicine by using illumination with light of appropriate intensity and wavelength as a trigger signal to achieve pinpoint spatiotemporal control of cellular activities, such as transgene expression. In this review, we highlight recent advances in optogenetics, focusing on devices for biomedical applications. We introduce the construction and applications of optogenetic-based biomedical tools to treat neurological diseases, diabetes, heart diseases, and cancer, as well as bioelectronic implants that combine light-interfaced electronic devices and optogenetic systems into portable personalized precision bioelectronic medical tools. Optogenetics-based technology promises the capability to achieve traceless, remotely controlled precision dosing of an enormous range of therapeutic outputs. Finally, we discuss the prospects for optogenetic medicine, as well as some emerging challenges.
163.

Light‐Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Sci, 30 Sep 2018 DOI: 10.1002/advs.201800952 Link to full text
Abstract: The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology‐inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light‐controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non‐neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light‐sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light‐controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
164.

Lighting Up Cancer Dynamics.

red Phytochromes Review
Trends Cancer, 25 Sep 2018 DOI: 10.1016/j.trecan.2018.06.001 Link to full text
Abstract: Live-cell microscopy has revealed that signaling pathways carry elaborate time-varying activities. Yet, the connection between these dynamics and cellular disease has remained elusive. Recent work leverages cellular optogenetics to analyze the Ras-to-Erk transfer function in cancer cells. These analyses reveal how changes to the filtering properties of a pathway lead to the misperception of extracellular events. Overall, these studies suggest that mutations do not simply hyperactivate pathways but rather can also change their transmission properties in more subtle ways.
165.

Switchable inteins for conditional protein splicing.

blue red LOV domains Phytochromes Review
Biol Chem, 18 Sep 2018 DOI: 10.1515/hsz-2018-0309 Link to full text
Abstract: Synthetic biologists aim at engineering controllable biological parts such as DNA, RNA and proteins in order to steer biological activities using external inputs. Proteins can be controlled in several ways, for instance by regulating the expression of their encoding genes with small molecules or light. However, post-translationally modifying pre-existing proteins to regulate their function or localization leads to faster responses. Conditional splicing of internal protein domains, termed inteins, is an attractive methodology for this purpose. Here we discuss methods to control intein activity with a focus on those compatible with applications in living cells.
166.

Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway.

red PhyB/PIF6 16HBE14o- BEAS-2B HCC827 II-18 NCI-H1395 NCI-H441 NIH/3T3 Signaling cascade control Cell cycle control
Science, 31 Aug 2018 DOI: 10.1126/science.aao3048 Link to full text
Abstract: The Ras-Erk (extracellular signal-regulated kinase) pathway encodes information in its dynamics; the duration and frequency of Erk activity can specify distinct cell fates. To enable dynamic encoding, temporal information must be accurately transmitted from the plasma membrane to the nucleus. We used optogenetic profiling to show that both oncogenic B-Raf mutations and B-Raf inhibitors can cause corruption of this transmission, so that short pulses of input Ras activity are distorted into abnormally long Erk outputs. These changes can reshape downstream transcription and cell fates, resulting in improper decisions to proliferate. These findings illustrate how altered dynamic signal transmission properties, and not just constitutively increased signaling, can contribute to cell proliferation and perhaps cancer, and how optogenetic profiling can dissect mechanisms of signaling dysfunction in disease.
167.

Generic and reversible opto-trapping of biomolecules.

red PhyB/PIF6 in vitro Extracellular optogenetics
Acta Biomater, 27 Aug 2018 DOI: 10.1016/j.actbio.2018.08.032 Link to full text
Abstract: Molecular traps can control activity and abundance of many biological factors. Here, we report the development of a generic opto-trap to reversibly bind and release biomolecules with high spatiotemporal control by illumination with noninvasive and cell-compatible red and far-red light. We use the Arapidopsis thaliana photoreceptor phytochrome B to regulate the release of diverse proteins from a variety of material scaffolds. Fusion of a short 100 amino acids "PIF-tag", derived from the phytochrome interacting factor 6, renders arbitrary molecules opto-trap-compatible. Reversible opto-trapping of target molecules enables novel possibilities for future developments in diagnostics, therapeutics and basic research.
168.

A compendium of chemical and genetic approaches to light-regulated gene transcription.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Crit Rev Biochem Mol Biol, 24 Jul 2018 DOI: 10.1080/10409238.2018.1487382 Link to full text
Abstract: On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
169.

Illuminating pathogen-host intimacy through optogenetics.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
PLoS Pathog, 12 Jul 2018 DOI: 10.1371/journal.ppat.1007046 Link to full text
Abstract: The birth and subsequent evolution of optogenetics has resulted in an unprecedented advancement in our understanding of the brain. Its outstanding success does usher wider applications; however, the tool remains still largely relegated to neuroscience. Here, we introduce selected aspects of optogenetics with potential applications in infection biology that will not only answer long-standing questions about intracellular pathogens (parasites, bacteria, viruses) but also broaden the dimension of current research in entwined models. In this essay, we illustrate how a judicious integration of optogenetics with routine methods can illuminate the host-pathogen interactions in a way that has not been feasible otherwise.
170.

Four Key Steps Control Glycolytic Flux in Mammalian Cells.

red PhyB/PIF6 NIH/3T3 Signaling cascade control
Cell Syst, 26 Jun 2018 DOI: 10.1016/j.cels.2018.06.003 Link to full text
Abstract: Altered glycolysis is a hallmark of diseases including diabetes and cancer. Despite intensive study of the contributions of individual glycolytic enzymes, systems-level analyses of flux control through glycolysis remain limited. Here, we overexpress in two mammalian cell lines the individual enzymes catalyzing each of the 12 steps linking extracellular glucose to excreted lactate, and find substantial flux control at four steps: glucose import, hexokinase, phosphofructokinase, and lactate export (and not at any steps of lower glycolysis). The four flux-controlling steps are specifically upregulated by the Ras oncogene: optogenetic Ras activation rapidly induces the transcription of isozymes catalyzing these four steps and enhances glycolysis. At least one isozyme catalyzing each of these four steps is consistently elevated in human tumors. Thus, in the studied contexts, flux control in glycolysis is concentrated in four key enzymatic steps. Upregulation of these steps in tumors likely underlies the Warburg effect.
171.

Independent Control over Multiple Cell Types in Space and Time Using Orthogonal Blue and Red Light Switchable Cell Interactions.

blue red CRY2/CIB1 PhyB/PIF6 MDA-MB-231 Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Sci, 17 Jun 2018 DOI: 10.1002/advs.201800446 Link to full text
Abstract: Independent control over multiple cell–material interactions with high spatiotemporal resolution is a key for many biomedical applications and understanding cell biology, as different cell types can perform different tasks in a multicellular context. In this study, the binding of two different cell types to materials is orthogonally controlled with blue and red light providing independent regulation in space and time. Cells expressing the photoswitchable protein cryptochrome 2 (CRY2) on cell surface bind to N‐truncated CRY‐interacting basic helix–loop–helix protein 1 (CIBN)‐immobilized substrates under blue light and cells expressing the photoswitchable protein phytochrome B (PhyB ) on cell surface bind to phytochrome interaction factor 6 (PIF6)‐immobilized substrates under red light, respectively. These light‐switchable cell interactions provide orthogonal and noninvasive control using two wavelengths of visible light. Moreover, both cell–material interactions are dynamically switched on under light and reversible in the dark. The specificity of the CRY2/CIBN and PhyB/PIF6 interactions and their response to different wavelengths of light allow selectively activating the binding of one cell type with blue and the other cell type with red light in the presence of the other cell type.
172.

Light-controllable Transcription System by Nucleocytoplasmic Shuttling of a Truncated Phytochrome B.

red PhyB/PIF6 HEK293
Photochem Photobiol, 12 Jun 2018 DOI: 10.1111/php.12955 Link to full text
Abstract: Transcriptional regulation is a useful strategy for gene therapy and for biomedical research. Unlike chemically regulated transcriptional approaches, spatiotemporal control of transcription using optogenetic tools is a powerful technology for the analysis of single cells. For light to penetrate into tissues, it is desired to use photoreceptors absorbing red/far-red light with a low-molecular mass applicable for the use of virus vectors, and a photoswitch using the photoreceptor need to be constructed as a single expression vector. Herein, we describe an optogenetic tool based on Arabidopsis thaliana phytochrome (Phy) B and its binding partner, phytochrome-interacting factor (PIF) 6. We generated a truncated PhyB, which allowed for reversible association with PIF6 by red/far-red light illumination. The red light illumination only for 5 min induced PhyB translocation from cytoplasm into the nucleus by the association with PIF6, resulting in transcriptional activation based on Gal4 DNA-binding domain and the upstream activating sequence of Gal system. The nucleocytoplasmic shuttling vector using PhyB and PIF6 might be applicable for transcriptional regulation in tissue experiments. This article is protected by copyright. All rights reserved.
173.

L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.

red PhyB/PIF3 S. cerevisiae
Nat Commun, 22 May 2018 DOI: 10.1038/s41467-017-02208-6 Link to full text
Abstract: The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a light-controlled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome re-engineering project Sc2.0 or in other recombination-based systems.
174.

Optogenetic regulation of transcription.

blue green near-infrared red Cryptochromes LOV domains Phytochromes Review
BMC Neurosci, 19 Apr 2018 DOI: 10.1186/s12868-018-0411-6 Link to full text
Abstract: Optogenetics has become widely recognized for its success in real-time control of brain neurons by utilizing nonmammalian photosensitive proteins to open or close membrane channels. Here we review a less well known type of optogenetic constructs that employs photosensitive proteins to transduce the signal to regulate gene transcription, and its possible use in medicine. One of the problems with existing gene therapies is that they could remain active indefnitely while not allowing regulated transgene production on demand. Optogenetic regulation of transcription (ORT) could potentially be used to regulate the production of a biological drug in situ, by repeatedly applying light to the tissue, and inducing expression of therapeutic transgenes when needed. Red and near infrared wavelengths, which are capable of penetration into tissues, have potential for therapeutic applications. Existing ORT systems are reviewed herein with these considerations in mind.
175.

Optogenetics: A Primer for Chemists.

blue green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chembiochem, 19 Apr 2018 DOI: 10.1002/cbic.201800013 Link to full text
Abstract: The field of optogenetics uses genetically encoded, light-responsive proteins to control physiological processes. This technology has been hailed as the one of the ten big ideas in brain science in the past decade,[1] the breakthrough of the decade,[2] and the method of the year in 2010[3] and again in 2014[4]. The excitement evidenced by these proclamations is confirmed by a couple of impressive numbers. The term "optogenetics" was coined in 2006.[5] As of December 2017, "optogenetics" is found in the title or abstract of almost 1600 currently funded National Institutes of Health grants. In addition, nearly 600 reviews on optogenetics have appeared since 2006, which averages out to approximately one review per week! However, in spite of these impressive numbers, the potential applications and implications of optogenetics are not even close to being fully realized. This is due, in large part, to the challenges associated with the design of optogenetic analogs of endogenous proteins. This review is written from a chemist's perspective, with a focus on the molecular strategies that have been developed for the construction of optogenetic proteins.
Submit a new publication to our database