Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 151 - 175 of 1097 results
151.

Dynamic Light-Induced Protein Patterns at Model Membranes.

blue iLID in vitro
J Vis Exp, 23 Feb 2024 DOI: 10.3791/66531 Link to full text
Abstract: The precise localization and activation of proteins at the cell membrane at a certain time gives rise to many cellular processes, including cell polarization, migration, and division. Thus, methods to recruit proteins to model membranes with subcellular resolution and high temporal control are essential when reproducing and controlling such processes in synthetic cells. Here, a method is described for fabricating light-regulated reversible protein patterns at lipid membranes with high spatiotemporal precision. For this purpose, we immobilize the photoswitchable protein iLID (improved light-inducible dimer) on supported lipid bilayers (SLBs) and on the outer membrane of giant unilamellar vesicles (GUVs). Upon local blue light illumination, iLID binds to its partner Nano (wild-type SspB) and allows the recruitment of any protein of interest (POI) fused to Nano from the solution to the illuminated area on the membrane. This binding is reversible in the dark, which provides dynamic binding and release of the POI. Overall, this is a flexible and versatile method for regulating the localization of proteins with high precision in space and time using blue light.
152.

Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.

blue iLID S. cerevisiae U-2 OS Organelle manipulation
Nat Chem, 21 Feb 2024 DOI: 10.1038/s41557-024-01456-6 Link to full text
Abstract: Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
153.

A temperature-inducible protein module for control of mammalian cell fate.

blue BcLOV4 HEK293T Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell death
bioRxiv, 19 Feb 2024 DOI: 10.1101/2024.02.19.581019 Link to full text
Abstract: Inducible protein switches are used throughout the biosciences to allow on-demand control of proteins in response to chemical or optical inputs. However, these inducers either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. Using custom devices for rapid and high-throughput temperature control during live-cell microscopy, we find that the original Melt variant fully switches states between 28-32°C, and state changes can be observed within minutes of temperature changes. Melt was highly modular, permitting thermal control over diverse intracellular processes including signaling, proteolysis, and nuclear shuttling through straightforward end-to-end fusions with no further engineering. Melt was also highly tunable, giving rise to a library of Melt variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt could thermally regulate important cell decisions over this range, including cytoskeletal rearrangement and apoptosis. Thus Melt represents a versatile thermogenetic module that provides straightforward, temperature-based, real-time control of mammalian cells with broad potential for biotechnology and biomedicine.
154.

Photocontrol of small GTPase Ras fused with a photoresponsive protein.

blue VfAU1-LOV in vitro Signaling cascade control
J Biochem, 15 Feb 2024 DOI: 10.1093/jb/mvae017 Link to full text
Abstract: The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. (1-9) was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
155.

Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter.

blue CRY2/CRY2 iLID HEK293T NCI-H3122
Cell Syst, 8 Feb 2024 DOI: 10.1016/j.cels.2024.01.005 Link to full text
Abstract: Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
156.

Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.

blue green near-infrared red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
MedComm (2020), 4 Feb 2024 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: [This corrects the article DOI: 10.1002/mco2.226.].
157.

Epstein-Barr Virus Promotes Tumorigenicity and Worsens Hodgkin Lymphoma Prognosis by Activating JAK/STAT and NF-κB Signaling Pathways.

blue red DmPAC PAL E. coli Transgene expression Multichromatic
Iran J Med Sci, 1 Feb 2024 DOI: 10.21203/rs.3.rs-3902447/v1 Link to full text
Abstract: Epstein-Barr virus (EBV) is detected in 40% of patients with Hodgkin lymphoma (HL). During latency, EBV induces epigenetic alterations to the host genome and decreases the expression of pro-apoptotic proteins. The present study aimed to evaluate the expression levels of mRNA molecules and the end product of proteins for the JAK/STAT and NF-κB pathways, and their association with clinicopathological and prognostic parameters in patients with EBV-positive and -negative classical Hodgkin lymphoma (CHL).
158.

Using split protein reassembly strategy to optically control PLD enzymatic activity.

blue CRY2/CIB1 iLID HEK293T HeLa Signaling cascade control Organelle manipulation
bioRxiv, 30 Jan 2024 DOI: 10.1101/2024.01.27.577557 Link to full text
Abstract: Phospholipase D (PLD) and phosphatidic acid (PA) play a spatio-temporal role in regulating diverse cellular activities. Although current methodologies enable optical control of the subcellular localization of PLD and by which influence local PLD enzyme activity, the overexpression of PLD elevates the basal PLD enzyme activity and further leads to increased PA levels in cells. In this study, we employed a split protein reassembly strategy and optogenetic techniques to modify superPLD (a PLDPMF variant with a high basal activity). We splited this variants into two HKD domains and fused these domains with optogenetic elements and by which we achieved light-mediated dimerization of the two HKD proteins and then restored the PLD enzymatic activity.
159.

Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling

blue AsLOV2 CRY2/CIB1 iLID HEK293T Signaling cascade control
ACS Cent Sci, 30 Jan 2024 DOI: 10.1021/acscentsci.3c01105 Link to full text
Abstract: Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light–oxygen–voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
160.

Spatiotemporally controlled Pseudomonas exotoxin transgene system combined with multifunctional nanoparticles for breast cancer antimetastatic therapy.

blue VVD 4T1 HCT116 HUVEC mouse in vivo NCTC clone 929 Transgene expression
J Control Release, 25 Jan 2024 DOI: 10.1016/j.jconrel.2023.08.011 Link to full text
Abstract: The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvβ3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
161.

Programmable RNA base editing with photoactivatable CRISPR-Cas13.

blue Magnets HEK293T HeLa HT-1080 MCF7 mouse in vivo Neuro-2a Nucleic acid editing
Nat Commun, 22 Jan 2024 DOI: 10.1038/s41467-024-44867-2 Link to full text
Abstract: CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.
162.

Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust.

blue BcLOV4 CRY2/CRY2 HEK293T Signaling cascade control
J Mol Biol, 20 Jan 2024 DOI: 10.1016/j.jmb.2024.168452 Link to full text
Abstract: Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.
163.

Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization.

blue AsLOV2 U-2 OS Control of intracellular / vesicular transport
Proc Natl Acad Sci U S A, 18 Jan 2024 DOI: 10.1073/pnas.2307997121 Link to full text
Abstract: Open Reading Frame 6 (ORF6) proteins, which are unique to severe acute respiratory syndrome-related (SARS) coronavirus, inhibit the classical nuclear import pathway to antagonize host antiviral responses. Several alternative models were proposed to explain the inhibitory function of ORF6 [H. Xia et al., Cell Rep. 33, 108234 (2020); L. Miorin et al., Proc. Natl. Acad. Sci. U.S.A. 117, 28344-28354 (2020); and M. Frieman et al., J. Virol. 81, 9812-9824 (2007)]. To distinguish these models and build quantitative understanding of ORF6 function, we developed a method for scoring both ORF6 concentration and functional effect in single living cells. We combined quantification of untagged ORF6 expression level in single cells with optogenetics-based measurement of nuclear transport kinetics, using methods that could be adapted to measure concentration-dependent effects of any untagged protein. We found that SARS-CoV-2 ORF6 is ~15 times more potent than SARS-CoV-1 ORF6 in inhibiting nuclear import and export, due to differences in the C-terminal region that is required for the NUP98-RAE1 binding. The N-terminal region was required for transport inhibition. This region binds membranes but could be replaced by synthetic constructs which forced oligomerization in solution, suggesting its primary function is oligomerization. We propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the NUP98-RAE1 complexes at the nuclear pore complex, and this multivalent binding inhibits bidirectional transport.
164.

Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.

blue iLID HEK293T NIH/3T3 Organelle manipulation
bioRxiv, 17 Jan 2024 DOI: 10.1101/2024.01.16.575860 Link to full text
Abstract: Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function—dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles, a major question in cell biology and drug development. Here we report an optogenetic approach to selectively dissolve a condensate of interest in a reversible and spatially controlled manner. We show that light-gated recruitment of maltose-binding protein (MBP), a commonly used solubilizing domain in protein purification, results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP, showing that disrupting condensation of the oncogenic fusion protein FUS-CHOP results in reversion of FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
165.

An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells.

blue PAL E. coli HEK293T Transgene expression
Adv Sci (Weinh), 16 Jan 2024 DOI: 10.1002/advs.202304519 Link to full text
Abstract: The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.
166.

Optical sensing and control of T cell signaling pathways.

blue Cryptochromes LOV domains Review
Front Physiol, 10 Jan 2024 DOI: 10.3389/fphys.2023.1321996 Link to full text
Abstract: T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
167.

Development of an optogenetic gene expression system in Lactococcus lactis using a split photoactivatable T7 RNA polymerase.

blue Magnets L. lactis Transgene expression
bioRxiv, 6 Jan 2024 DOI: 10.1101/2024.01.05.574370 Link to full text
Abstract: Cellular processes can be modulated by physical means, such as light, which offers advantages over chemically inducible systems with respect to spatiotemporal control. Here we introduce an optogenetic gene expression system for Lactococcus lactis that utilizes a split T7 RNA polymerase linked to two variants of the Vivid regulators. Depending on the chosen photoreceptor variant, either ‘Magnets’ or ‘enhanced Magnets’, this system can achieve either high protein expression levels or low basal activity in the absence of light, exhibiting a fold induction close to 30, rapid expression kinetics, and heightened light sensitivity. This system functions effectively in liquid cultures and within cells embedded in hydrogel matrices, highlighting its potential in the development of novel engineered living materials capable of responding to physical stimuli such as light. The optogenetic component of this system is highly customizable, allowing for the adjustment of expression patterns through modifications to the promoters and/or engineered T7 RNA polymerase variants. We anticipate that this system can be broadly adapted to other Gram-positive hosts with minimal modifications required.
168.

Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells.

blue red AsLOV2 CRY2/CIB1 MagRed HEK293 Transgene expression
Cell Res, 4 Jan 2024 DOI: 10.1038/s41422-023-00896-y Link to full text
Abstract: Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.
169.

Light inducible protein degradation in E. coli with the LOVdeg tag.

blue AsLOV2 EL222 E. coli Transgene expression
Elife, 3 Jan 2024 DOI: 10.7554/elife.87303.2 Link to full text
Abstract: Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system, and introduce a powerful new tool for bacterial optogenetics.
170.

Nano-optogenetic CAR-T Cell Immunotherapy.

blue iLID Jurkat mouse in vivo
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3593-3_17 Link to full text
Abstract: Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.
171.

Controlling the Potency of T Cell Activation Using an Optically Tunable Chimeric Antigen Receptor.

blue LOVTRAP Jurkat
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3834-7_5 Link to full text
Abstract: The ability of biological systems to convert inputs from their environment into information to guide future decisions is central to life and a matter of great importance. While we know the components of many of the signaling networks that make these decisions, our understanding of the dynamic flow of information between these parts remains far more limited. T cells are an essential white blood cell type of an adaptive immune response and can discriminate between healthy and infected cells with remarkable sensitivity. This chapter describes the use of a synthetic T-cell receptor (OptoCAR) that is optically tunable within cell conjugates, providing control over the duration, and intensity of intracellular T-cell signaling dynamics. Optical control can also provide control over signaling with high spatial precision, and the OptoCAR is likely to find application more generally when modulating T-cell function with imaging approaches.
172.

Optical Control of Mononegavirus Gene Expression and Replication.

blue Magnets BHK/T7-9 HEK293T MDBK Vero/hSLAM
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3870-5_4 Link to full text
Abstract: Mononegaviruses are promising tools as oncolytic and transgene vectors for gene therapy and regenerative medicine. However, when mononegaviruses are used for therapeutic applications, the viral activity must be strictly controlled due to concerns about toxicity and severe side effects. With this technology, mononegavirus vectors can be grown where they are intended and can be easily removed when they are no longer needed. In particular, a photoswitch protein called Magnet (consisting of two magnet domains) is incorporated into the hinge region between the connector and methyltransferase domains of the mononegavirus polymerase protein (L protein) to disrupt the L protein functions. Blue light (470 ± 20 nm) irradiation causes the dimerization of the two magnet domains, and the L protein is restored to activity, allowing viral gene expression and virus replication. Since the magnet domains' dimerization is reversible, viral gene expression and replication cease when blue light irradiation is stopped.
173.

Controlling the Subcellular Localization of Signaling Proteins Using Chemically Induced Dimerization and Optogenetics.

blue iLID D. discoideum
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3894-1_8 Link to full text
Abstract: A given protein can perform numerous roles in a cell with its participation in protein complexes and distinct localization within the cell playing a critical role in its diverse functions. Thus, the ability to artificially dimerize proteins and recruit proteins to specific locations in a cell has become a powerful tool for the investigation of protein function and the understanding of cell biology. Here, we discuss two systems that have been used to activate signal transduction pathways, a chemically inducible dimerization (CID) and a light-inducible (LI) system to control signaling and cytoskeletal regulation in a spatial and temporal manner.
174.

Construction and Characterization of Light-Responsive Transcriptional Systems.

blue EL222 S. cerevisiae
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-4063-0_18 Link to full text
Abstract: Optogenetic tools provide a means for controlling cellular processes that is rapid, noninvasive, and spatially and temporally precise. With the increase in available optogenetic systems, quantitative comparisons of their performances become important to guide experiments. In this chapter, we first discuss how photoreceptors can be repurposed for light-mediated control of transcription. Then, we provide a detailed protocol for characterizing light-regulated transcriptional systems in budding yeast using fluorescence time-lapse microscopy and mathematical modeling, expanding on our recent publication (Gligorovski et al., Nat Commun 14:3810, 2023).
175.

Multimodal Control of Bacterial Gene Expression by Red and Blue Light.

blue red DrBphP PAL E. coli Multichromatic
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3658-9_26 Link to full text
Abstract: By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.
Submit a new publication to our database