Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 126 - 133 of 133 results
126.

Strategies for the photo-control of endogenous protein activity.

blue Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 28 Nov 2016 DOI: 10.1016/j.sbi.2016.11.014 Link to full text
Abstract: Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field.
127.

Strategies for development of optogenetic systems and their applications.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
J Photochem Photobiol C, 14 Nov 2016 DOI: 10.1016/j.jphotochemrev.2016.10.003 Link to full text
Abstract: It has become clear that biological processes are highly dynamic and heterogeneous within and among cells. Conventional analytical tools and chemical or genetic manipulations are unsuitable for dissecting the role of their spatiotemporally dynamic nature. Recently, optical control of biomolecular signaling, a technology called “optogenetics,” has gained much attention. The technique has enabled spatial and temporal regulation of specific signaling pathways both in vitro and in vivo. This review presents strategies for optogenetic systems development and application for biological research. Combinations with other technologies and future perspectives are also discussed herein. Although many optogenetic approaches are designed to modulate ion channel conductivity, we mainly examine systems that target other biomolecular reactions such as gene expression, protein translocations, and kinase or receptor signaling pathways.
128.

Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis.

blue red Cryptochromes LOV domains Phytochromes Review
Trends Cell Biol, 7 Oct 2016 DOI: 10.1016/j.tcb.2016.09.006 Link to full text
Abstract: Optogenetics is an emerging and powerful technique that allows the control of protein activity with light. The possibility of inhibiting or stimulating protein activity with the spatial and temporal precision of a pulse of laser light is opening new frontiers for the investigation of developmental pathways and cell biological bases underlying organismal development. With this powerful technique in hand, it will be possible to address old and novel questions about how cells, tissues, and organisms form. In this review, we focus on the applications of existing optogenetic tools for addressing issues in animal morphogenesis.
129.

Targeting protein function: the expanding toolkit for conditional disruption.

blue red Cryptochromes LOV domains Phytochromes Review
Biochem J, 1 Sep 2016 DOI: 10.1042/bcj20160240 Link to full text
Abstract: A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours.
130.

Following Optogenetic Dimerizers and Quantitative Prospects.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biophys J, 17 Aug 2016 DOI: 10.1016/j.bpj.2016.07.040 Link to full text
Abstract: Optogenetics describes the use of genetically encoded photosensitive proteins to direct intended biological processes with light in recombinant and native systems. While most of these light-responsive proteins were originally discovered in photosynthetic organisms, the past few decades have been punctuated by experiments that not only commandeer but also engineer and enhance these natural tools to explore a wide variety of physiological questions. In addition, the ability to tune dynamic range and kinetic rates of optogenetic actuators is a challenging question that is heavily explored with computational methods devised to facilitate optimization of these systems. Here, we explain the basic mechanisms of a few popular photodimerizing optogenetic systems, discuss applications, compare optogenetic tools against more traditional chemical methods, and propose a simple quantitative understanding of how actuators exert their influence on targeted processes.
131.

Investigating neuronal function with optically controllable proteins.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Mol Neurosci, 21 Jul 2015 DOI: 10.3389/fnmol.2015.00037 Link to full text
Abstract: In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain.
132.

Optimizing optogenetic constructs for control over signaling and cell behaviours.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Photochem Photobiol Sci, 2 Jul 2015 DOI: 10.1039/c5pp00171d Link to full text
Abstract: Optogenetic tools have recently been developed that enable dynamic control over the activities of select signaling proteins. They provide the unique ability to rapidly turn signaling events on or off with subcellular control in living cells and organisms. This capability is leading to new insights into how the spatial and temporal coordination of signaling events governs dynamic cell behaviours such as migration and neurite outgrowth. These tools can also be used to dissect a protein's signaling functions at different organelles. Here we review the properties of photoreceptors from diverse organisms that have been leveraged to control signaling in mammalian cells. We emphasize recent engineering approaches that have been used to create optogenetic constructs with optimized spectral, kinetic, and signaling properties for controlling cell behaviours.
133.

An optimized optogenetic clustering tool for probing protein interaction and function.

blue CRY2/CRY2 CRY2olig Cos-7 HEK293 S. cerevisiae Control of cytoskeleton / cell motility / cell shape Control of intracellular / vesicular transport
Nat Commun, 18 Sep 2014 DOI: 10.1038/ncomms5925 Link to full text
Abstract: The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
Submit a new publication to our database