Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 126 - 150 of 150 results
126.

Oncogenic protein condensates modulate cell signal perception and drug tolerance.

blue CRY2/CRY2 iLID H3122 STE-1 Signaling cascade control
bioRxiv, 4 Feb 2022 DOI: 10.1101/2022.02.02.478845 Link to full text
Abstract: Drug resistance remains a central challenge towards durable cancer therapy, including for cancers driven by the EML4-ALK oncogene. EML4-ALK and related fusion oncogenes form cytoplasmic protein condensates that transmit oncogenic signals through the Ras/Erk pathway. However, whether such condensates play a role in drug response or resistance development is unclear. Here, we applied optogenetic functional profiling to examine how EML4-ALK condensates impact signal transmission through transmembrane receptor tyrosine kinases (RTKs), a common route of resistance signaling. We found that condensates dramatically suppress signaling through activated RTKs including EGFR. Conversely, ALK inhibition restored and hypersensitized RTK signals. Modulation of RTK sensitivity occurred because EML4-ALK condensates sequestered downstream adapters that are required to transduce signals from both EML4-ALK and ligand-stimulated RTKs. Strikingly, EGFR hypersensitization resulted in rapid and pulsatile Erk signal reactivation within 10s of minutes of drug addition. EGFR reactivation originated from paracrine signals from neighboring apoptotic cells, and reactivation could be blocked by inhibition of either EGFR or matrix metalloproteases. Paracrine signals promoted survival during ALK inhibition, and blockade of paracrine signals accelerated cell killing and suppressed drug tolerance. Our results uncover a regulatory role for protein condensates in cancer signaling and drug response and demonstrate the potential of optogenetic profiling for drug discovery based on functional biomarkers in cancer cells.
127.

Mechanical strain stimulates COPII-dependent trafficking via Rac1.

blue CRY2/CIB1 HeLa Control of cytoskeleton / cell motility / cell shape Control of vesicular transport
bioRxiv, 23 Jan 2022 DOI: 10.1101/2022.01.23.477215 Link to full text
Abstract: Secretory trafficking from the endoplasmic reticulum (ER) is subject to regulation by extrinsic and intrinsic factors. While much of the focus has been on biochemical triggers, little is known whether and how the ER is subject to regulation by mechanical signals. Here, we show that COPII-dependent ER-export is regulated by mechanical strain. Mechanotransduction to the ER was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulate ER-to-Golgi transport. Altogether, we establish an unprecedented link between mechanical strain and export from the ER.
128.

Quantification of nuclear transport inhibition by SARS-CoV-2 ORF6 using a broadly applicable live-cell dose-response pipeline.

blue AsLOV2 U-2 OS
bioRxiv, 14 Dec 2021 DOI: 10.1101/2021.12.10.472151 Link to full text
Abstract: SARS coronavirus ORF6 inhibits the classical nuclear import pathway to antagonize host antiviral responses. Several models were proposed to explain its inhibitory function, but quantitative measurement is needed for model evaluation and refinement. We report a broadly applicable live-cell method for calibrated dose-response characterization of the nuclear transport alteration by a protein of interest. Using this method, we found that SARS-CoV-2 ORF6 is ∼5 times more potent than SARS-CoV-1 ORF6 in inhibiting bidirectional nuclear transport, due to differences in the NUP98-binding C-terminal region that is required for the inhibition. The N-terminal region was also required, but its membrane binding function was dispensable, since loss of the inhibitory function due to N-terminal truncation was rescued by forced oligomerization using a soluble construct. Based on these data, we propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the FG domains of NUP98 at the nuclear pore complex.
129.

Optogenetic operated probiotics to regulate host metabolism by mimicking enteroendocrine.

blue YtvA L. lactis Transgene expression
bioRxiv, 1 Dec 2021 DOI: 10.1101/2021.11.30.470589 Link to full text
Abstract: The enteroendocrine system plays an important role in metabolism. The gut microbiome regulates enteroendocrine in an extensive way, arousing attention in biomedicine. However, conventional strategies of enteroendocrine regulation via gut microbiome are usually non-specific or imprecise. Here, an optogenetic operated probiotics system was developed combining synthetic biology and flexible electronics to achieve in situ controllable secretion to mimic enteroendocrine. Firstly, optogenetic engineered Lactococcus lactis (L. lactis) were administrated in the intestinal tract. A wearable optogenetic device was designed to control optical signals remotely. Then, L. lactis could secrete enteroendocrine hormone according to optical signals. As an example, optogenetic L. lactis could secrete glucagon-like peptide-1(GLP-1) under the control of the wearable optogenetic device. To improve the half-life of GLP-1 in vivo, the Fc domain from immunoglobulin was fused. Treated with this strategy, blood glucose, weight and other features were relatively well controlled in rats and mice models. Furthermore, up-conversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential in metabolic diseases therapy by mimicking enteroendocrine.
130.

Intercellular transport of RNA can limit heritable epigenetic changes.

blue miniSOG C. elegans in vivo Epigenetic modification
bioRxiv, 6 Oct 2021 DOI: 10.1101/2021.10.05.463267 Link to full text
Abstract: RNAs in circulation carry sequence-specific regulatory information between cells in animal, plant, and host-pathogen systems. Double-stranded RNA (dsRNA) delivered into the extracellular space of the nematode C. elegans accumulates within the germline and reaches progeny. Here we provide evidence for spatial, temporal, and substrate specificity in the transport of dsRNA from parental circulation to progeny. Temporary loss of dsRNA transport resulted in the persistent accumulation of mRNA from a germline gene. The expression of this gene varied among siblings and even between gonad arms within one animal. Perturbing RNA regulation of the gene created new epigenetic states that lasted for many generations. Thus, one role for the transport of dsRNA into the germline in every generation is to limit heritable changes in gene expression.
131.

Activation of endoplasmic reticulum stress via clustering of inner nuclear membrane proteins.

blue CRY2olig HEK293FT U-2 OS Signaling cascade control
bioRxiv, 14 Sep 2021 DOI: 10.1101/2021.09.14.460295 Link to full text
Abstract: One of the major cellular mechanisms to ensure protein homeostasis is the endoplasmic reticulum (ER) stress response. This pathway is typically triggered by accumulation of misfolded proteins in the ER lumen. Here we describe activation of ER stress via protein aggregation in the cell nucleus. We find in the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) activation of ER stress due to the aggregation of the diseases-causing progerin protein at the nuclear envelope. The presence of nucleoplasmic protein aggregates is sensed and signaled to the ER lumen via immobilization and clustering of theinner nuclear membrane protein SUN2, leading to activation of the Unfolded Protein Response (UPR). These results identify a nuclear trigger of ER stress and they provide insight into the molecular disease mechanisms of HGPS.
132.

The effect of substrate stiffness on tensile force transduction in the epithelial monolayers.

blue TULIP in silico Control of cytoskeleton / cell motility / cell shape
bioRxiv, 6 Sep 2021 DOI: 10.1101/2021.09.06.459078 Link to full text
Abstract: In recent years, the importance of mechanical signaling and the cellular mechanical microenvironment in affecting cellular behavior has been widely accepted. Cells in epithelial monolayers are mechanically connected to each other and the underlying extracellular matrix (ECM), forming a highly connected mechanical system subjected to various mechanical cues from their environment, such as the ECM stiffness. Changes in the ECM stiffness have been linked to many pathologies, including tumor formation. However, our understanding of how ECM stiffness and its heterogeneities affect the transduction of mechanical forces in epithelial monolayers is lacking. To investigate this, we used a combination of experimental and computational methods. The experiments were conducted using epithelial cells cultured on an elastic substrate and applying a mechanical stimulus by moving a single cell by micromanipulation. To replicate our experiments computationally and quantify the forces transduced in the epithelium, we developed a new model that described the mechanics of both the cells and the substrate. Our model further enabled the simulations with local stiffness heterogeneities. We found the substrate stiffness to distinctly affect the force transduction as well as the cellular movement and deformation following an external force. Also, we found that local changes in the stiffness can alter the cells’ response to external forces over long distances. Our results suggest that this long-range signaling of the substrate stiffness depends on the cells’ ability to resist deformation. Furthermore, we found that the cell’s elasticity in the apico-basal direction provides a level of detachment between the apical cell-cell junctions and the basal focal adhesions. Our simulation results show potential for increased ECM stiffness, e.g. due to a tumor, to modulate mechanical signaling between cells also outside the stiff region. Furthermore, the developed model provides a good platform for future studies on the interactions between epithelial monolayers and elastic substrates.
133.

Mechanical worrying drives cell migration in crowded environments.

blue AsLOV2 CRY2/CIB1 MV3 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 12 Aug 2021 DOI: 10.1101/2020.11.09.372912 Link to full text
Abstract: Migratory cells navigate through crowded 3D microenvironments in vivo. Amoeboid cells, such as immune cells and some cancer cells, are thought to do so by deforming their bodies to squeeze through tight spaces.1 Yet large populations of nearly spherical amoeboid cells migrate2–4 in microenvironments too dense5,6 to move through without extensive shape deformations. How they do so is unknown. We used high-resolution light-sheet microscopy to visualize metastatic melanoma cells in dense environments, finding that cells maintain a round morphology as they migrate and create a path through which to move via bleb-driven mechanical degradation and subsequent macropinocytosis of extracellular matrix components. Proteolytic degradation of the extracellular matrix via matrix metalloproteinases is not required. Membrane blebs are short-lived relative to the timescale of migration, and thus persistence in their polarization is critical for productive ablation of the extracellular matrix. Interactions between small but long-lived cortical adhesions and collagen at the cell front induce PI-3 Kinase signaling that drive bleb enlargement via branched actin polymerization. Large blebs in turn abrade collagen, creating a feedback between extracellular matrix structure, cell morphology, and cell polarization that results in both path generation and persistent cell movement.
134.

Rab11 endosomes coordinate centrosome number and movement following mitotic exit.

blue CRY2/CIB1 zebrafish in vivo Organelle manipulation
bioRxiv, 11 Aug 2021 DOI: 10.1101/2021.08.11.455966 Link to full text
Abstract: The last stage of cell division involves two daughter cells remaining interconnected by a cytokinetic bridge that is cleaved in a process called abscission. During pre-abscission, we identified that the centrosome moves in a Rab11-dependent manner towards the cytokinetic bridge in human cells grown in culture and in an in vivo vertebrate model, Danio rerio (zebrafish). Rab11-endosomes are dynamically organized in a Rab11-GTP dependent manner at the centrosome during pre-abscission and this organization is required for the centrosome protein, pericentrin, to be enriched at the centrosome. Using zebrafish embryos, we found that reduction in pericentrin expression or optogenetically disrupting Rab11-endosome function inhibited centrosome movement towards the cytokinetic bridge and abscission resulting in daughter cells prone to being binucleated and/or having supernumerary centrosomes. These studies suggest that Rab11-endosomes contribute to centrosome function during pre-abscission by regulating pericentrin organization resulting in appropriate centrosome movement towards the cytokinetic bridge and subsequent abscission.
135.

Mechanosensitivity of nucleocytoplasmic transport.

blue AsLOV2 MEF-1 Signaling cascade control
bioRxiv, 24 Jul 2021 DOI: 10.1101/2021.07.23.453478 Link to full text
Abstract: Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Here we show that nuclear forces differentially control both passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than facilitated diffusion. Due to this differential effect, force leads to the translocation into or out of the nucleus of cargoes within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism, and engineered exogenously by introducing appropriate nuclear localization signals. Our work sets a novel framework to understand mechanically induced signalling, with potential general applicability across signalling pathways and pathophysiological scenarios.
136.

Bioluminescent Synthetic Cells Communicate with Natural Cells and Self-Activate Light-Responsive Proteins.

blue EL222 iLID in vitro Transgene expression Control of cell-cell / cell-material interactions Extracellular optogenetics
bioRxiv, 26 May 2021 DOI: 10.1101/2021.05.20.444896 Link to full text
Abstract: Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the synthesis and application of blue-light-generating synthetic cells using bioluminescence, dismissing the need for an external light source. First, the lipid membrane and internal composition of light-producing synthetic cells were optimized to enable high-intensity emission. Next, we show these cells’ capacity for triggering bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride in a quorum-sensing like mechanism. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of activating engineered processes inside tissues.
137.

A photo-switchable yeast isocitrate dehydrogenase to control metabolic flux through the citric acid cycle.

blue AsLOV2 S. cerevisiae Transgene expression
bioRxiv, 25 May 2021 DOI: 10.1101/2021.05.25.445643 Link to full text
Abstract: For various research questions in metabolism, it is highly desirable to have means available, with which the flux through specific pathways can be perturbed dynamically, in a reversible manner, and at a timescale that is consistent with the fast turnover rates of metabolism. Optogenetics, in principle, offers such possibility. Here, we developed an initial version of a photo-switchable isocitrate dehydrogenase (IDH) aimed at controlling the metabolic flux through the citric acid cycle in budding yeast. By inserting a protein-based light switch (LOV2) into computationally identified active/regulatory-coupled sites of IDH and by using in vivo screening in Saccharomyces cerevisiae, we obtained a number of IDH enzymes whose activity can be switched by light. Subsequent in-vivo characterization and optimization resulted in an initial version of photo-switchable (PS) IDH. While further improvements of the enzyme are necessary, our study demonstrates the efficacy of the overall approach from computational design, via in vivo screening and characterization. It also represents one of the first few examples, where optogenetics were used to control the activity of a metabolic enzyme.
138.

Dynamics and heterogeneity of Erk-induced immediate-early gene expression.

blue red iLID PhyB/PIF mouse epidermal keratinocytes NIH/3T3 Signaling cascade control
bioRxiv, 30 Apr 2021 DOI: 10.1101/2021.04.30.442166 Link to full text
Abstract: Many canonical signaling pathways exhibit complex time-varying responses, yet how minutes-timescale pulses of signaling interact with the dynamics of transcription and gene expression remains poorly understood. Erk-induced immediate early gene (IEG) expression is a model of this interface, exemplifying both dynamic pathway activity and a rapid, potent transcriptional response. Here, we quantitatively characterize IEG expression downstream of dynamic Erk stimuli in individual cells. We find that IEG expression responds rapidly to acute changes in Erk activity, but only in a sub-population of stimulus-responsive cells. We find that while Erk activity partially predicts IEG expression, a majority of response heterogeneity is independent of Erk and can be rapidly tuned by different mitogenic stimuli and parallel signaling pathways. We extend our findings to an in vivo context, the mouse epidermis, where we observe heterogenous immediate-early gene accumulation in both fixed tissue and single-cell RNA-sequencing data. Our results demonstrate that signaling dynamics can be faithfully transmitted to gene expression and suggest that the signaling-responsive population is an important parameter for interpreting gene expression responses.
139.

Asymmetric Contraction of Adherens Junctions arises through RhoA and E-cadherin feedback.

blue TULIP Caco-2 Control of cell-cell / cell-material interactions
bioRxiv, 26 Feb 2021 DOI: 10.1101/2021.02.26.433093 Link to full text
Abstract: Tissue morphogenesis often arises from the culmination of discrete changes in cell-cell junction behaviors, namely ratcheted junction contractions that lead to collective cellular rearrangements. Mechanochemical signaling in the form of RhoA underlies these ratcheted contractions, which occur asymmetrically as one highly motile vertex contracts toward a relatively less motile tricellular vertex. The underlying mechanisms driving asymmetric vertex movement remains unknown. Here, we use optogenetically controlled RhoA in model epithelia together with biophysical modeling to uncover the mechanism lending to asymmetric vertex motion. We find that both local and global RhoA activation leads to increases in junctional tension, thereby facilitating vertex motion. RhoA activation occurs in discrete regions along the junction and is skewed towards the less-motile vertex. At these less-motile vertices, E-cadherin acts as an opposing factor to limit vertex motion through increased frictional drag. Surprisingly, we uncover a feedback loop between RhoA and E-cadherin, as regional optogenetic activation of specified junctional zones pools E-cadherin to the location of RhoA activation. Incorporating this circuit into a mathematical model, we find that a positive feedback between RhoA-mediated tension and E-cadherin-induced frictional drag on tricellular vertices recapitulates experimental data. As such, the location of RhoA determines which vertex is under high tension, pooling E-cadherin and increasing the frictional load at the tricellular vertex to limit its motion. This feedback drives a tension-dependent intercellular “clutch” at tricellular vertices which stabilizes vertex motion upon tensional load.
140.

A synthetic switch based on orange carotenoid protein to control blue light responses in chloroplasts.

blue OCP A. thaliana in vivo A. thaliana leaf protoplasts
bioRxiv, 30 Jan 2021 DOI: 10.1101/2021.01.27.428448 Link to full text
Abstract: Synthetic biology approaches to engineer light‐responsive system are widely used, but their applications in plants are still limited, due to the interference with endogenous photoreceptors. Cyanobacteria, such as Synechocystis spp., possess a soluble carotenoid associated protein named Orange Carotenoid binding Protein (OCP) that, when activated by blue‐green light, undergoes reversible conformational changes that enable photoprotection of the phycobilisomes. Exploiting this system, we developed a new chloroplast‐localized synthetic photoswitch based on a photoreceptor‐associated protein‐fragment complementation assay (PCA). Since Arabidopsis thaliana does not possess the prosthetic group needed for the assembly of the OCP2 protein, we implemented the carotenoid biosynthetic pathway with a bacterial β‐carotene ketolase enzyme (crtW), to generate keto‐carotenoids producing plants. The novel photoswitch was tested and characterized in Arabidopsis protoplasts with experiments aimed to uncover its regulation by light intensity, wavelength, and its conversion dynamics. We believe that this pioneer study establishes the basis for future implementation of plastid optogenetics to regulate organelle responses, such as gene transcription or enzymatic activity, upon exposure to specific light spectra.
141.

High levels of Dorsal transcription factor downregulate, not promote, snail expression by regulating enhancer action.

blue AsLOV2 D. melanogaster in vivo Developmental processes
bioRxiv, 11 Jan 2021 DOI: 10.1101/2021.01.11.426256 Link to full text
Abstract: In Drosophila embryos, genes expressed along the dorsal-ventral axis are responsive to concentration of the Dorsal (Dl) transcription factor, which varies in space; however, levels of this morphogen also build over time. Since expression of high-threshold Dl target genes such as snail (sna) is supported before Dl levels peak, it is unclear what role increasing levels have if any. Here we investigated action of two enhancers that control sna expression in embryos, demonstrating using genome editing that Dl binding sites within one enhancer located promoter proximally, sna.prox, can limit the ability of the other distally-located enhancer, sna.dis, to increase sna levels. In addition, MS2-MCP live imaging was used to study sna transcription rate in wildtype, dl heterozygote, and a background in which a photo-sensitive degron is fused to Dl (dl-BLID). The results demonstrate that, when Dl levels are high, Dl acts through sna.prox to limit the activity of sna.dis and thereby influence sna transcription rate. In contrast, when Dl levels are kept low using dl-BLID, sna.prox positively influences sna transcription rate. Collectively, our data support the view that Dl’s effect on gene expression changes over time, switching from promoting sna expression at low concentration to dampening sna expression at high concentration by regulating enhancer interactions. We propose this differential action of the Dl morphogen is likely supported by occupancy of this factor first to high and then low affinity binding sites over time as Dl levels rise to coordinate action of these two co-acting enhancers.
142.

Optogenetic inhibition and activation of Rac and Rap1 using a modified iLID system.

blue iLID HEK293T HeLa
bioRxiv, 11 Dec 2020 DOI: 10.1101/2020.12.11.421990 Link to full text
Abstract: The small GTPases Rac1 and Rap1 can fulfill multiple cellular functions because their activation kinetics and localization are precisely controlled. To probe the role of their spatio-temporal dynamics, we generated optogenetic tools that activate or inhibit endogenous Rac and Rap1 in living cells. An improved version of the light-induced dimerization (iLID) system [1] was used to control plasma membrane localization of protein domains that specifically activate or inactivate Rap1 and Rac (Tiam1 and Chimerin for Rac, RasGRP2 and Rap1GAP for Rap1 [2–5]). Irradiation yielded a 50-230% increase in the concentration of these domains at the membrane, leading to effects on cell morphodynamics consistent with the known roles of Rac1 and Rap1.
143.

Improved Photocleavable Proteins with Faster and More Efficient Dissociation.

violet PhoCl HeLa Transgene expression Cell death
bioRxiv, 10 Dec 2020 DOI: 10.1101/2020.12.10.419556 Link to full text
Abstract: The photocleavable protein (PhoCl) is a green-to-red photoconvertible fluorescent protein that, when illuminated with violet light, undergoes main chain cleavage followed by spontaneous dissociation of the resulting fragments. The first generation PhoCl (PhoCl1) exhibited a relative slow rate of dissociation, potentially limiting its utilities for optogenetic control of cell physiology. In this work, we report the X-ray crystal structures of the PhoCl1 green state, red state, and cleaved empty barrel. Using structure-guided engineering and directed evolution, we have developed PhoCl2c with higher contrast ratio and PhoCl2f with faster dissociation. We characterized the performance of these new variants as purified proteins and expressed in cultured cells. Our results demonstrate that PhoCl2 variants exhibit faster and more efficient dissociation, which should enable improved optogenetic manipulations of protein localization and protein-protein interactions in living cells.
144.

Regulating enzymatic reactions in Escherichia coli utilizing light-responsive cellular compartments based on liquid-liquid phase separation.

blue CRY2/CIB1 E. coli
bioRxiv, 29 Nov 2020 DOI: 10.1101/2020.11.26.395616 Link to full text
Abstract: Enzymatic reactions in cells are well organized into different compartments, among which protein-based membraneless compartments formed through liquid-liquid phase separation (LLPS) are believed to play important roles1,2. Hijacking them for our own purpose has promising applications in metabolic engineering3. Yet, it is still hard to precisely and dynamically control target enzymatic reactions in those compartments4. To address those problems, we developed Photo-Activated Switch in E. coli (PhASE), based on phase separating scaffold proteins and optogenetic tools. In this system, a protein of interest (POI) can be enriched up to 15-fold by LLPS-based compartments from cytosol within only a few seconds once activated by light, and become fully dispersed again within 15 minutes. Furthermore, we explored the potentiality of the LLPS-based compartment in enriching small organic molecules directly via chemical-scaffold interaction. With enzymes and substrates co-localized under light induction, the overall reaction efficiency could be enhanced. Using luciferin and catechol oxidation as model enzymatic reactions, we found that they could accelerate 2.3-fold and 1.6-fold, respectively, when regulated by PhASE. We anticipate our system to be an extension of the synthetic biology toolkit, facilitating rapid recruitment and release of POIs, and reversible regulation of enzymatic reactions.
145.

Biphasic Response of Protein Kinase A to Cyclic Adenosine Monophosphate Triggers Distinct Epithelial Phenotypes.

blue bPAC (BlaC) MDCK Immediate control of second messengers
bioRxiv, 3 Nov 2020 DOI: 10.1101/747030 Link to full text
Abstract: Despite the large diversity of the proteins involved in cellular signaling, many intracellular signaling pathways converge onto one of only dozens of small molecule second messengers. Cyclic adenosine monophosphate (cAMP), one of these second messengers, is known to regulate activity of both Protein Kinase A (PKA) and the Extracellular Regulated Kinase (ERK), among other signaling pathways. In its role as an important cellular signaling hub, intracellular cAMP concentration has long been assumed to monotonically regulate its known effectors. Using an optogenetic tool that can introduce precise amounts of cAMP in MDCKI cells, we identify genes whose expression changes biphasically with monotonically increasing cAMP levels. By examining the behavior of PKA and ERK1/2 in the same dose regime, we find that these kinases also respond biphasically to increasing cAMP levels, with opposite phases. We reveal that this behavior results from an elaborate integration by PKA of many cellular signals triggered by cAMP. In addition to the direct activation of PKA, cAMP also modulates the activity of p38 and ERK, which then converge to inhibit PKA. These interactions and their ensuing biphasic PKA profile have important physiological repercussions, influencing the ability of MDCKI cells to proliferate and form acini. Our data, supported by computational modeling, synthesize a set of network interconnections involving PKA and other important signaling pathways into a model that demonstrates how cells can capitalize on signal integration to create a diverse set of responses to cAMP concentration and produce complex input-output relationships.
146.

Illuminating a Phytochrome Paradigm- a Light-Activated Phosphatase in Two-Component Signaling Uncovered.

red Phytochromes Background
bioRxiv, 27 Jun 2020 DOI: 10.1101/2020.06.26.173310 Link to full text
Abstract: Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.
147.

Development of optogenetic tools to manipulate cell cycle checkpoints.

red PhyB/PIF3 S. pombe Cell cycle control
bioRxiv, 23 Jun 2020 DOI: 10.1101/2020.06.22.166264 Link to full text
Abstract: In order to understand the systematic regulation of the cell cycle, we need more precise tools for cell-cycle perturbation. Optogenetics is a powerful technique for precisely controlling cellular signaling at higher spatial and temporal resolution. Here, we report optogenetic tools for the rapid and reversible control of cell-cycle checkpoints with a red/far-red light photoreceptor, phytochrome B (PhyB). We established fission yeast cells producing phycocyanobilin as a chromophore of PhyB, and demonstrated light-dependent protein recruitment to the plasma membrane, nucleus, and kinetochore. Using this system, we developed optogenetic manipulation of the cell cycle in two ways: the Opto-G2/M checkpoint triggered G2/M cell cycle arrest in response to red light, and Opto-SAC induced a spindle assembly checkpoint (SAC) in response to red light and then quickly released the SAC by far-red light.
148.

Nano-positioning and tubuline conformation determine transport of mitochondria along microtubules.

blue TULIP primary mouse hippocampal neurons Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 28 Apr 2020 DOI: 10.1101/2020.04.27.064766 Link to full text
Abstract: Correct spatiotemporal distribution of organelles and vesicles is crucial for healthy cell functioning and is regulated by intracellular transport mechanisms. Controlled transport of bulky mitochondria is especially important in polarized cells such as neurons that rely on these organelles to locally produce energy and buffer calcium. Mitochondrial transport requires and depends on microtubules which fill much of the available axonal space. How mitochondrial transport is affected by their position within the microtubule bundles is not known. Here, we found that anterograde transport, driven by kinesin motors, is susceptible to the molecular conformation of tubulin both in vitro and in vivo. Anterograde velocities negatively correlate with the density of elongated tubulin dimers, similar to GTP-tubulin, that are more straight and rigid. The impact of the tubulin conformation depends primarily on where a mitochondrion is positioned, either within or at the rim of microtubule bundle. Increasing elongated tubulin levels lowers the number of motile anterograde mitochondria within the microtubule bundle and increases anterograde transport speed at the microtubule bundle rim. We demonstrate that the increased kinesin step processivity on microtubules consisting of elongated dimers underlies increased mitochondrial dynamics. Our work indicates that the molecular conformation of tubulin controls mitochondrial motility and as such locally regulates the distribution of mitochondria along axons.
149.

Optogenetic control of cell morphogenesis on protein micropatterns.

blue AsLOV2 HFF-1 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 4 Mar 2019 DOI: 10.1101/563353 Link to full text
Abstract: Cell morphogenesis is critical for embryonic development, tissue formation, and wound healing. Our ability to manipulate endogenous mechanisms to control cell shape, however, remains limited. Here we combined surface micropatterning of adhesion molecules with optogenetic activation of intracellular signaling pathways to control the nature and morphology of cellular protrusions. We employed geometry-dependent pre-organization of cytoskeletal structures together with acute activation of signaling pathways that control actin assembly to create a tool capable of generating membrane protrusions at defined cellular locations. Further, we find that the size of microfabricated patterns of adhesion molecules influences the molecular mechanism of cell protrusion: larger patterns enable cells to create actin-filled lamellipodia while smaller patterns promote formation of spherical blebs. Optogenetic perturbation of signaling pathways in these cells changes the size of blebs and convert them into lamellipodia. Our results demonstrate how the coordinated manipulation of adhesion geometry and cytoskeletal dynamics can be used to control membrane protrusion and cell morphogenesis.
150.

Optogenetics reprogramming of planktonic cells for biofilm formation.

red BphS P. aeruginosa Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions Immediate control of second messengers
bioRxiv, 4 Dec 2017 DOI: 10.1101/229229 Link to full text
Abstract: Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
Submit a new publication to our database