Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 126 - 150 of 252 results
126.

Quantitative Analysis of Membrane Receptor Trafficking Manipulated by Optogenetic Tools.

blue CRY2/CIB1 HEK293 HEK293T Control of vesicular transport
Methods Mol Biol, 2021 DOI: 10.1007/978-1-0716-1258-3_2 Link to full text
Abstract: Membrane receptors play a crucial role in transmitting external signals inside cells. Signal molecule-bound receptors activate multiple downstream pathways, the dynamics of which are modulated by intracellular trafficking. A significant contribution of β-arrestin to intracellular trafficking has been suggested, but the underlying mechanism is poorly understood. Here, we describe a protocol for manipulating β-arrestin-regulated membrane receptor trafficking using photo-induced dimerization of cryptochrome-2 from Arabidopsis thaliana and its binding partner CIBN. Additionally, the protocol guides analytical methods to quantify the changes in localization and modification of membrane receptors during trafficking.
127.

Engineering Supramolecular Organizing Centers for Optogenetic Control of Innate Immune Responses.

blue CRY2/CRY2 LOVTRAP HEK293T HeLa RAW264.7 THP-1
Adv Biol, 30 Dec 2020 DOI: 10.1002/adbi.202000147 Link to full text
Abstract: The spatiotemporal organization of oligomeric protein complexes, such as the supramolecular organizing centers (SMOCs) made of MyDDosome and MAVSome, is essential for transcriptional activation of host inflammatory responses and immunometabolism. Light‐inducible assembly of MyDDosome and MAVSome is presented herein to induce activation of nuclear factor‐kB and type‐I interferons. Engineering of SMOCs and the downstream transcription factor permits programmable and customized innate immune operations in a light‐dependent manner. These synthetic molecular tools will likely enable optical and user‐defined modulation of innate immunity at a high spatiotemporal resolution to facilitate mechanistic studies of distinct modes of innate immune activations and potential intervention of immune disorders and cancer.
128.

Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse.

blue red CRY2/CIB1 Magnets PhyB/PIF3 VVD HEK293T HeLa HEp-2 mouse in vivo SH-SY5Y Nucleic acid editing
Proc Natl Acad Sci U S A, 14 Dec 2020 DOI: 10.1073/pnas.2003991117 Link to full text
Abstract: Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.
129.

Optogenetic inhibition and activation of Rac and Rap1 using a modified iLID system.

blue iLID HEK293T HeLa
bioRxiv, 11 Dec 2020 DOI: 10.1101/2020.12.11.421990 Link to full text
Abstract: The small GTPases Rac1 and Rap1 can fulfill multiple cellular functions because their activation kinetics and localization are precisely controlled. To probe the role of their spatio-temporal dynamics, we generated optogenetic tools that activate or inhibit endogenous Rac and Rap1 in living cells. An improved version of the light-induced dimerization (iLID) system [1] was used to control plasma membrane localization of protein domains that specifically activate or inactivate Rap1 and Rac (Tiam1 and Chimerin for Rac, RasGRP2 and Rap1GAP for Rap1 [2–5]). Irradiation yielded a 50-230% increase in the concentration of these domains at the membrane, leading to effects on cell morphodynamics consistent with the known roles of Rac1 and Rap1.
130.

Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity.

near-infrared red BphP1/PpsR2 DrBphP nanoReD HEK293T HeLa mouse in vivo S. cerevisiae
ACS Synth Biol, 12 Nov 2020 DOI: 10.1021/acssynbio.0c00397 Link to full text
Abstract: Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.
131.

Optogenetic Control of the BMP Signaling Pathway.

blue VfAU1-LOV HEK293T hESCs SW 1353 T/C28a2 Signaling cascade control
ACS Synth Biol, 21 Oct 2020 DOI: 10.1021/acssynbio.0c00315 Link to full text
Abstract: Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.
132.

Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila.

blue CRY2/CIB1 BHK-21 D. melanogaster in vivo HEK293T PC-12 Signaling cascade control
Elife, 6 Oct 2020 DOI: 10.7554/elife.57395 Link to full text
Abstract: Neuroregeneration is a dynamic process synergizing the functional outcomes of multiple signaling circuits. Channelrhodopsin-based optogenetics shows the feasibility of stimulating neural repair but does not pin down specific signaling cascades. Here, we utilized optogenetic systems, optoRaf and optoAKT, to delineate the contribution of the ERK and AKT signaling pathways to neuroregeneration in live Drosophila larvae. We showed that optoRaf or optoAKT activation not only enhanced axon regeneration in both regeneration-competent and -incompetent sensory neurons in the peripheral nervous system but also allowed temporal tuning and proper guidance of axon regrowth. Furthermore, optoRaf and optoAKT differ in their signaling kinetics during regeneration, showing a gated versus graded response, respectively. Importantly in the central nervous system, their activation promotes axon regrowth and functional recovery of the thermonociceptive behavior. We conclude that non-neuronal optogenetics target damaged neurons and signaling subcircuits, providing a novel strategy in the intervention of neural damage with improved precision.
133.

Light-Regulated allosteric switch enables temporal and subcellular control of enzyme activity.

blue VVD HEK293T HeLa Signaling cascade control
Elife, 23 Sep 2020 DOI: 10.7554/elife.60647 Link to full text
Abstract: Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.
134.

Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein.

blue AsLOV2 HEK293T S. cerevisiae Signaling cascade control
Elife, 16 Sep 2020 DOI: 10.7554/elife.60155 Link to full text
Abstract: Heterotrimeric G-proteins are signal transducers involved in mediating the action of many natural extracellular stimuli as well as of many therapeutic agents. Non-invasive approaches to manipulate the activity of G-proteins with high precision are crucial to understand their regulation in space and time. Here, we developed LOV2GIVe, an engineered modular protein that allows the activation of heterotrimeric G-proteins with blue light. This optogenetic construct relies on a versatile design that differs from tools previously developed for similar purposes, i.e. metazoan opsins, which are light-activated GPCRs. Instead, LOV2GIVe consists of the fusion of a G-protein activating peptide derived from a non-GPCR regulator of G-proteins to a small plant protein domain, such that light uncages the G-protein activating module. Targeting LOV2GIVe to cell membranes allowed for light-dependent activation of Gi proteins in different experimental systems. In summary, LOV2GIVe expands the armamentarium and versatility of tools available to manipulate heterotrimeric G-protein activity.
135.

CL6mN: Rationally Designed Optogenetic Photoswitches with Tunable Dissociation Dynamics.

blue CRY2/CIB1 HEK293T NIH/3T3
ACS Synth Biol, 14 Aug 2020 DOI: 10.1021/acssynbio.0c00362 Link to full text
Abstract: The field of optogenetics uses genetically encoded photoswitches to modulate biological phenomena with high spatiotemporal resolution. We report a set of rationally designed optogenetic photoswitches that use the photolyase homology region of A. thaliana cryptochrome 2 (Cry2PHR) as a building block and exhibit highly efficient and tunable clustering in a blue-light dependent manner. CL6mN (Cry2-mCherry-LRP6c with N mutated PPPAP motifs) proteins were designed by mutating and/or truncating five crucial PPP(S/T)P motifs near the C-terminus of the optogenetic Wnt activator Cry2-mCherry-LRP6c, thus eliminating its Wnt activity. Light-induced CL6mN clusters have significantly greater dissociation half-lives than clusters of wild-type Cry2PHR. Moreover, the dissociation half-lives can be tuned by varying the number of PPPAP motifs, with the half-life increasing as much as 6-fold for a variant with five motifs (CL6m5) relative to Cry2PHR. Finally, we demonstrate the compatibility of CL6mN with previously reported Cry2-based photoswitches by optogenetically activating RhoA in mammalian cells.
136.

Spatiotemporal regulation of ubiquitin-mediated protein degradation via upconversion optogenetic nanosystem.

blue VVD HEK293T HeLa MARC145 mouse in vivo
Nano Res, 14 Aug 2020 DOI: 10.1007/s12274-020-2998-z Link to full text
Abstract: Protein degradation technology, which is one of the most direct and effective ways to regulate the life activities of cells, is expected to be applied to the treatment of various diseases. However, current protein degradation technologies such as some small-molecule degraders which are unable to achieve spatiotemporal regulation, making them difficult to transform into clinical applications. In this article, an upconversion optogenetic nanosystem was designed to attain accurate regulation of protein degradation. This system worked via two interconnected parts: 1) the host cell expressed light-sensitive protein that could trigger the ubiquitinproteasome pathway upon blue-light exposure; 2) the light regulated light-sensitive protein by changing light conditions to achieve regulation of protein degradation. Experimental results based on model protein (Green Fluorescent Protein, GFP) validated that this system could fulfill protein degradation both in vitro (both Hela and 293T cells) and in vivo (by upconversion optogenetic nanosystem), and further demonstrated that we could reach spatiotemporal regulation by changing the illumination time (0–25 h) and the illumination frequency (the illuminating frequency of 0–30 s every 1 min). We further took another functional protein (The Nonstructural Protein 9, NSP9) into experiment. Results confirmed that the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV) was inhibited by degrading the NSP9 in this light-induced system, and PRRSV proliferation was affected by different light conditions (illumination time varies from 0–24 h). We expected this system could provide new perspectives into spatiotemporal regulation of protein degradation and help realize the clinical application transformation for treating diseases of protein degradation technology.
137.

Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold.

blue AsLOV2 iLID HEK293T in vitro NIH/3T3 Extracellular optogenetics
Nat Commun, 13 Aug 2020 DOI: 10.1038/s41467-020-17837-7 Link to full text
Abstract: Monobodies are synthetic non-immunoglobulin customizable protein binders invaluable to basic and applied research, and of considerable potential as future therapeutics and diagnostic tools. The ability to reversibly control their binding activity to their targets on demand would significantly expand their applications in biotechnology, medicine, and research. Here we present, as proof-of-principle, the development of a light-controlled monobody (OptoMB) that works in vitro and in cells and whose affinity for its SH2-domain target exhibits a 330-fold shift in binding affinity upon illumination. We demonstrate that our αSH2-OptoMB can be used to purify SH2-tagged proteins directly from crude E. coli extract, achieving 99.8% purity and over 40% yield in a single purification step. By virtue of their ability to be designed to bind any protein of interest, OptoMBs have the potential to find new powerful applications as light-switchable binders of untagged proteins with the temporal and spatial precision afforded by light.
138.

Optogenetic control of protein binding using light-switchable nanobodies.

blue red AsLOV2 iLID PhyB/PIF6 HEK293 HEK293T NIH/3T3 Signaling cascade control
Nat Commun, 13 Aug 2020 DOI: 10.1038/s41467-020-17836-8 Link to full text
Abstract: A growing number of optogenetic tools have been developed to reversibly control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in cells or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications including reversibly binding to endogenous intracellular targets, modulating signaling pathway activity, and controlling binding to purified protein targets in vitro. This work represents a step towards programmable photoswitchable regulation of a wide variety of target proteins.
139.

Photo-SNAP-tag, a Light-Regulated Chemical Labeling System.

blue AsLOV2 CRY2/CIB1 iLID HEK293T
ACS Chem Biol, 16 Jul 2020 DOI: 10.1021/acschembio.0c00412 Link to full text
Abstract: Methods that allow labeling and tracking of proteins have been instrumental for understanding their function. Traditional methods for labeling proteins include fusion to fluorescent proteins or self-labeling chemical tagging systems such as SNAP-tag or Halo-tag. These latter approaches allow bright fluorophores or other chemical moieties to be attached to a protein of interest through a small fusion tag. In this work, we sought to improve the versatility of self-labeling chemical-tagging systems by regulating their activity with light. We used light-inducible dimerizers to reconstitute a split SNAP-tag (modified human O6-alkylguanine-DNA-alkyltransferase, hAGT) protein, allowing tight light-dependent control of chemical labeling. In addition, we generated a small split SNAP-tag fragment that can efficiently self-assemble with its complement fragment, allowing high labeling efficacy with a small tag. We envision these tools will extend the versatility and utility of the SNAP-tag chemical system for protein labeling applications.
140.

Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency.

blue CRY2/CRY2 VfAU1-LOV HEK293T hESCs human IPSCs MEF-1 piPSC Signaling cascade control
Biomaterials, 15 Jul 2020 DOI: 10.1016/j.biomaterials.2020.120222 Link to full text
Abstract: Stem cell fate is largely determined by cellular signaling networks and is heavily dependent on the supplementation of exogenous recombinant proteins into culture media; however, uneven distribution and inconsistent stability of recombinant proteins are closely associated with the spontaneous differentiation of pluripotent stem cells (PSCs) and result in significant costs in large-scale manufacturing. Here, we report a novel PSC culture system via wirelessly controllable optical activation of the fibroblast growth factor (FGF) signaling pathway without the need for supplementation of recombinant FGF2 protein, a key molecule for maintaining pluripotency of PSCs. Using a fusion protein between the cytoplasmic region of the FGF receptor-1 and a light-oxygen-voltage domain, we achieved tunable, blue light-dependent activation of FGF signaling in human and porcine PSCs. Our data demonstrate that a highly controllable optical stimulation of the FGF signaling pathway is sufficient for long-term maintenance of PSCs, without the loss of differentiation potential into three germ layers. This culture system will be a cost-effective platform for a large-scale stem cell culture.
141.

Optogenetic Downregulation of Protein Levels to Control Programmed Cell Death in Mammalian Cells with a Dual Blue-Light Switch.

blue AsLOV2 EL222 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_11 Link to full text
Abstract: Optogenetic approaches facilitate the study of signaling and metabolic pathways in animal cell systems. In the past 10 years, a plethora of light-regulated switches for the targeted control over the induction of gene expression, subcellular localization of proteins, membrane receptor activity, and other cellular processes have been developed and successfully implemented. However, only a few tools have been engineered toward the quantitative and spatiotemporally resolved downregulation of proteins. Here we present a protocol for reversible and rapid blue light-induced reduction of protein levels in mammalian cells. By implementing a dual-regulated optogenetic switch (Blue-OFF), both repression of gene expression and degradation of the target protein are triggered simultaneously. We apply this system for the blue light-mediated control of programmed cell death. HEK293T cells are transfected with the proapoptotic proteins PUMA and BID integrated into the Blue-OFF system. Overexpression of these proteins leads to programmed cell death, which can be prevented by irradiation with blue light. This experimental approach is very straightforward, requires just simple hardware, and therefore can be easily implemented in state-of-the-art equipped mammalian cell culture labs. The system can be used for targeted cell signaling studies and biotechnological applications.
142.

Optogenetic Control of Gene Expression Using Cryptochrome 2 and a Light-Activated Degron.

blue CRY2/CIB1 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_10 Link to full text
Abstract: Optogenetic tools allow for use of light as an external input to control cellular processes. When applied to regulate the function of transcription factors, optogenetic approaches provide a tunable, reversible, and bidirectional method to control gene expression. Herein, we present a detailed method to induce gene expression in mammalian cells using the light dependent dimerization of cryptochrome 2 (CRY2) and CIB1 to complement a split transcription factor. We also describe a protocol to disrupt gene expression with light by fusing a dimeric transcription factor to CRY2. When combined with a light-induced degron attached to the gene product, this method allows for rapid modulation of target protein abundance.
143.

Optogenetic Control of Nucleocytoplasmic Protein Transport.

blue AsLOV2 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_8 Link to full text
Abstract: The transport of proteins between the nucleus and the cytosol is a vital process regulating cellular activity. The ability to spatiotemporally control the nucleocytoplasmic transport of a protein of interest allows for elucidating its function taking into account the dynamic and heterogeneous nature of biological processes contrary to conventional knockin, knockout, and chemically induced overexpression strategies. We recently developed two optogenetic tools, called LINuS and LEXY, for reversibly controlling with blue light the nuclear import and export of proteins of interest, respectively. Here we describe how to use them to control the localization of a protein of interest in cultured mammalian cells using a fluorescence microscope.
144.

Photoactivatable RNA N6 -Methyladenosine Editing with CRISPR-Cas13.

blue CRY2/CIB1 HEK293T HeLa primary mouse BMSCs Epigenetic modification
Small, 25 Jun 2020 DOI: 10.1002/smll.201907301 Link to full text
Abstract: RNA has important and diverse biological roles, but the molecular methods to manipulate it spatiotemporally are limited. Here, an engineered photoactivatable RNA N6 -methyladenosine (m6 A) editing system with CRISPR-Cas13 is designed to direct specific m6 A editing. Light-inducible heterodimerizing proteins CIBN and CRY2PHR are fused to catalytically inactive PguCas13 (dCas13) and m6 A effectors, respectively. This system, referred to as PAMEC, enables the spatiotemporal control of m6 A editing in response to blue light. Further optimization of this system to create a highly efficient version, known as PAMECR , allows the manipulation of multiple genes robustly and simultaneously. When coupled with an upconversion nanoparticle film, the optogenetic operation window is extended from the visible range to tissue-penetrable near-infrared wavelengths, which offers an appealing avenue to remotely control RNA editing. These results show that PAMEC is a promising optogenetic platform for flexible and efficient targeting of RNA, with broad applicability for epitranscriptome engineering, imaging, and future therapeutic development.
145.

Unblending of Transcriptional Condensates in Human Repeat Expansion Disease.

blue CRY2/CRY2 HEK293T Organelle manipulation
Cell, 7 May 2020 DOI: 10.1016/j.cell.2020.04.018 Link to full text
Abstract: Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.
146.

Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T isolated MEFs mouse in vivo mouse neural progenitor cells
Nat Commun, 1 May 2020 DOI: 10.1038/s41467-020-16030-0 Link to full text
Abstract: Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.
147.

Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and mortality.

blue CRY2/CIB1 HEK293T
Sci Adv, 8 Apr 2020 DOI: 10.1126/sciadv.aaz6980 Link to full text
Abstract: As extracellular vesicles that play an active role in intercellular communication by transferring cellular materials to recipient cells, exosomes offer great potential as a natural therapeutic drug delivery vehicle. The inflammatory responses in various disease models can be attenuated through introduction of super-repressor IκB (srIκB), which is the dominant active form of IκBα and can inhibit translocation of nuclear factor κB into the nucleus. An optogenetically engineered exosome system (EXPLOR) that we previously developed was implemented for loading a large amount of srIκB into exosomes. We showed that intraperitoneal injection of purified srIκB-loaded exosomes (Exo-srIκBs) attenuates mortality and systemic inflammation in septic mouse models. In a biodistribution study, Exo-srIκBs were observed mainly in the neutrophils, and in monocytes to a lesser extent, in the spleens and livers of mice. Moreover, we found that Exo-srIκB alleviates inflammatory responses in monocytic THP-1 cells and human umbilical vein endothelial cells.
148.

A Generalizable Optogenetic Strategy to Regulate Receptor Tyrosine Kinases during Vertebrate Embryonic Development.

blue CRY2/CIB1 VfAU1-LOV HEK293T PC-12 Xenopus in vivo Signaling cascade control Cell differentiation Developmental processes
J Mol Biol, 8 Apr 2020 DOI: 10.1016/j.jmb.2020.03.032 Link to full text
Abstract: Ligand-independent activation of receptor tyrosine kinases (RTKs) allows for dissecting out the receptor-specific signaling outcomes from the pleiotropic effects of the ligands. In this regard, RTK intracellular domains (ICD) are of interest due to their ability to recapitulate signaling activity in a ligand-independent manner when fused to chemical and optical dimerizing domains. A common strategy for synthetic activation of RTKs involves membrane tethering of dimerizer-RTK ICD fusions. Depending on the intrinsic signaling capacity, however, this approach could entail undesirable baseline signaling activity in the absence of stimulus, thereby diminishing the system's sensitivity. Here, we observed toxicity in early Xenopus laevis embryos when using such a conventional optogenetic design for the fibroblast growth factor receptor (FGFR). To surpass this challenge, we developed a cytoplasm-to-membrane translocation approach, where FGFR ICD is recruited from the cytoplasm to the plasma membrane by light, followed by its subsequent activation via homo-association. This strategy results in the optical activation of FGFR with low background activity and high sensitivity, which allows for the light-mediated formation of ectopic tail-like structure in developing Xenopus laevis embryos. We further generalized this strategy by developing optogenetic platforms to control three neurotrophic tropomyosin receptor kinases, TrkA, TrkB, and TrkC. We envision that these ligand-independent optogenetic RTKs will provide useful toolsets for the delineation of signaling sub-circuits in developing vertebrate embryos.
149.

Combining optogenetics with sensitive FRET imaging to monitor local microtubule manipulations.

blue AsLOV2 HEK293T HeLa Control of cytoskeleton / cell motility / cell shape
Sci Rep, 7 Apr 2020 DOI: 10.1038/s41598-020-62874-3 Link to full text
Abstract: Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.
150.

Application of optogenetic Amyloid-β distinguishes between metabolic and physical damage in neurodegeneration.

blue CRY2/CRY2 C. elegans in vivo D. melanogaster in vivo HEK293T zebrafish in vivo Developmental processes
Elife, 31 Mar 2020 DOI: 10.7554/elife.52589 Link to full text
Abstract: The brains of Alzheimer's Disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer's Disease is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of Alzheimer's Disease. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.
Submit a new publication to our database