Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1451 - 1475 of 1498 results
1451.

Lights on and action! Controlling microbial gene expression by light.

blue green near-infrared red BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Appl Microbiol Biotechnol, 20 Feb 2011 DOI: 10.1007/s00253-011-3141-6 Link to full text
Abstract: Light-mediated control of gene expression and thus of any protein function and metabolic process in living microbes is a rapidly developing field of research in the areas of functional genomics, systems biology, and biotechnology. The unique physical properties of the environmental factor light allow for an independent photocontrol of various microbial processes in a noninvasive and spatiotemporal fashion. This mini review describes recently developed strategies to generate photo-sensitive expression systems in bacteria and yeast. Naturally occurring and artificial photoswitches consisting of light-sensitive input domains derived from different photoreceptors and regulatory output domains are presented and individual properties of light-controlled expression systems are discussed.
1452.

PACα--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans.

blue euPAC C. elegans in vivo Immediate control of second messengers Neuronal activity control
J Neurochem, 20 Jan 2011 DOI: 10.1111/j.1471-4159.2010.07148.x Link to full text
Abstract: Photoactivated adenylyl cyclase α (PACα) was originally isolated from the flagellate Euglena gracilis. Following stimulation by blue light it causes a rapid increase in cAMP levels. In the present study, we expressed PACα in cholinergic neurons of Caenorhabditis elegans. Photoactivation led to a rise in swimming frequency, speed of locomotion, and a decrease in the number of backward locomotion episodes. The extent of the light-induced behavioral effects was dependent on the amount of PACα that was expressed. Furthermore, electrophysiological recordings from body wall muscle cells revealed an increase in miniature post-synaptic currents during light stimulation. We conclude that the observed effects were caused by cAMP synthesis because of photoactivation of pre-synaptic PACα which subsequently triggered acetylcholine release at the neuromuscular junction. Our results demonstrate that PACα can be used as an optogenetic tool in C. elegans for straightforward in vivo manipulation of intracellular cAMP levels by light, with good temporal control and high cell specificity. Thus, using PACα allows manipulation of neurotransmitter release and behavior by directly affecting intracellular signaling.
1453.

Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions.

blue Cryptochromes Fluorescent proteins LOV domains Review
Biochemistry, 14 Dec 2010 DOI: 10.1021/bi101665s Link to full text
Abstract: Blue-light photoreceptors play a pivotal role in detecting the quality and quantity of light in the environment, controlling a wide range of biological responses. Several families of blue-light photoreceptors have been characterized in detail using biophysics and biochemistry, beginning with photon absorption, through intervening signal transduction, to regulation of biological activities. Here we review the light oxygen voltage, cryptochrome, and sensors of blue light using FAD families, three different groups of proteins that offer distinctly different modes of photochemical activation and signal transduction yet play similar roles in a vast array of biological responses. We cover mechanisms of light activation and propagation of conformational responses that modulate protein-protein interactions involved in biological signaling. Discovery and characterization of these processes in natural proteins are now allowing the design of photoregulatable engineered proteins, facilitating the generation of novel reagents for biochemical and cell biological research.
1454.

Rapid blue-light-mediated induction of protein interactions in living cells.

blue CRY2/CIB1 HEK293T S. cerevisiae
Nat Methods, 31 Oct 2010 DOI: 10.1038/nmeth.1524 Link to full text
Abstract: Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
1455.

Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications.

blue BlgC bPAC (BlaC) E. coli in vitro Immediate control of second messengers
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.177600 Link to full text
Abstract: Cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers that regulate metabolic and behavioral responses in diverse organisms. We describe purification, engineering, and characterization of photoactivated nucleotidyl cyclases that can be used to manipulate cAMP and cGMP levels in vivo. We identified the blaC gene encoding a putative photoactivated adenylyl cyclase in the Beggiatoa sp. PS genome. BlaC contains a BLUF domain involved in blue-light sensing using FAD and a nucleotidyl cyclase domain. The blaC gene was overexpressed in Escherichia coli, and its product was purified. Irradiation of BlaC in vitro resulted in a small red shift in flavin absorbance, typical of BLUF photoreceptors. BlaC had adenylyl cyclase activity that was negligible in the dark and up-regulated by light by 2 orders of magnitude. To convert BlaC into a guanylyl cyclase, we constructed a model of the nucleotidyl cyclase domain and mutagenized several residues predicted to be involved in substrate binding. One triple mutant, designated BlgC, was found to have photoactivated guanylyl cyclase in vitro. Irradiation with blue light of the E. coli cya mutant expressing BlaC or BlgC resulted in the significant increases in cAMP or cGMP synthesis, respectively. BlaC, but not BlgC, restored cAMP-dependent growth of the mutant in the presence of light. Small protein sizes, negligible activities in the dark, high light-to-dark activation ratios, functionality at broad temperature range and physiological pH, as well as utilization of the naturally occurring flavins as chromophores make BlaC and BlgC attractive for optogenetic applications in various animal and microbial models.
1456.

Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa.

blue bPAC (BlaC) euPAC D. melanogaster in vivo E. coli in vitro rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
J Biol Chem, 28 Oct 2010 DOI: 10.1074/jbc.m110.185496 Link to full text
Abstract: The recent success of channelrhodopsin in optogenetics has also caused increasing interest in enzymes that are directly activated by light. We have identified in the genome of the bacterium Beggiatoa a DNA sequence encoding an adenylyl cyclase directly linked to a BLUF (blue light receptor using FAD) type light sensor domain. In Escherichia coli and Xenopus oocytes, this photoactivated adenylyl cyclase (bPAC) showed cyclase activity that is low in darkness but increased 300-fold in the light. This enzymatic activity decays thermally within 20 s in parallel with the red-shifted BLUF photointermediate. bPAC is well expressed in pyramidal neurons and, in combination with cyclic nucleotide gated channels, causes efficient light-induced depolarization. In the Drosophila central nervous system, bPAC mediates light-dependent cAMP increase and behavioral changes in freely moving animals. bPAC seems a perfect optogenetic tool for light modulation of cAMP in neuronal cells and tissues and for studying cAMP-dependent processes in live animals.
1457.

The Cryptochrome Blue Light Receptors.

blue Cryptochromes Review Background
Arabidopsis Book, 23 Sep 2010 DOI: 10.1199/tab.0135 Link to full text
Abstract: Cryptochromes are photolyase-like blue light receptors originally discovered in Arabidopsis but later found in other plants, microbes, and animals. Arabidopsis has two cryptochromes, CRY1 and CRY2, which mediate primarily blue light inhibition of hypocotyl elongation and photoperiodic control of fl oral initiation, respectively. In addition, cryptochromes also regulate over a dozen other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Cryptochromes have two domains, the N-terminal PHR (Photolyase-Homologous Region) domain that bind the chromophore FAD (flavin adenine dinucleotide), and the CCE (CRY C-terminal Extension) domain that appears intrinsically unstructured but critical to the function and regulation of cryptochromes. Most cryptochromes accumulate in the nucleus, and they undergo blue light-dependent phosphorylation or ubiquitination. It is hypothesized that photons excite electrons of the fl avin molecule, resulting in redox reaction or circular electron shuttle and conformational changes of the photoreceptors. The photoexcited cryptochrome are phosphorylated to adopt an open conformation, which interacts with signaling partner proteins to alter gene expression at both transcriptional and posttranslational levels and consequently the metabolic and developmental programs of plants.
1458.

Using light to control signaling cascades in live neurons.

blue red LOV domains Phytochromes Review
Curr Opin Neurobiol, 17 Sep 2010 DOI: 10.1016/j.conb.2010.08.018 Link to full text
Abstract: Understanding the complexity of neuronal biology requires the manipulation of cellular processes with high specificity and spatio-temporal precision. The recent development of synthetic photo-activatable proteins designed using the light-oxygen-voltage and phytochrome domains provides a new set of tools for genetically targeted optical control of cell signaling. Their modular design, functional diversity, precisely controlled activity and in vivo applicability offer many advantages for investigating neuronal function. Although designing these proteins is still a considerable challenge, future advances in rational protein design and a deeper understanding of their photoactivation mechanisms will allow the development of the next generation of optogenetic techniques.
1459.

A photoswitchable DNA-binding protein based on a truncated GCN4-photoactive yellow protein chimera.

blue PYP in vitro Extracellular optogenetics
Photochem Photobiol Sci, 13 Sep 2010 DOI: 10.1039/c0pp00214c Link to full text
Abstract: Photo-controlled DNA-binding proteins promise to be useful tools for probing complex spatiotemporal patterns of gene expression in living organisms. Here we report a novel photoswitchable DNA-binding protein, GCN4(S)Δ25PYP, based on a truncated GCN4-photoactive yellow protein chimera. In contrast to previously reported designed photoswitchable proteins where DNA binding affinity is enhanced upon irradiation, GCN4(S)Δ25PYP dissociates from DNA when irradiated with blue light. In addition, the rate of thermal relaxation to the ground state, part of the PYP photocycle, is enhanced by DNA binding whereas in previous reported constructs it is slowed. The origins of this reversed photoactivity are analyzed in structural terms.
1460.

Recent advances in the photochemical control of protein function.

blue red LOV domains Phytochromes Review
Trends Biotechnol, 29 Jul 2010 DOI: 10.1016/j.tibtech.2010.06.001 Link to full text
Abstract: Biological processes are regulated with a high level of spatial and temporal resolution. To understand and manipulate these processes, scientists need to be able to regulate them with Nature's level of precision. In this context, light is a unique regulatory element because it can be precisely controlled in terms of location, timing and amplitude. Moreover, most biological laboratories have a wide range of light sources as standard equipment. This review article summarizes the most recent advances in light-mediated regulation of protein function and its application in a cellular context. Specifically, the photocaging of small-molecule modulators of protein function and of specific amino acid residues in proteins is discussed. In addition, examples of the photochemical control of protein function through the application of genetically engineered natural-light receptors are presented.
1461.

Rationally improving LOV domain-based photoswitches.

blue AsLOV2 in vitro
Nat Methods, 20 Jun 2010 DOI: 10.1038/nmeth.1473 Link to full text
Abstract: Genetically encoded protein photosensors are promising tools for engineering optical control of cellular behavior; we are only beginning to understand how to couple these light detectors to effectors of choice. Here we report a method that increases the dynamic range of an artificial photoswitch based on the LOV2 domain of Avena sativa phototropin 1 (AsLOV2). This approach can potentially be used to improve many AsLOV2-based photoswitches.
1462.

Optogenetically Induced Olfactory Stimulation in Drosophila Larvae Reveals the Neuronal Basis of Odor-Aversion behavior.

blue euPAC D. melanogaster in vivo Immediate control of second messengers Neuronal activity control
Front Behav Neurosci, 2 Jun 2010 DOI: 10.3389/fnbeh.2010.00027 Link to full text
Abstract: Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs) through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2) or the light-sensitive adenylyl cyclase (Pacalpha) were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation toward or away from the light source. Here we show that activation of Pacalpha expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.
1463.

Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo.

blue AsLOV2 D. melanogaster in vivo Schneider 2 Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 16 May 2010 DOI: 10.1038/ncb2061 Link to full text
Abstract: The small GTPase Rac induces actin polymerization, membrane ruffling and focal contact formation in cultured single cells but can either repress or stimulate motility in epithelial cells depending on the conditions. The role of Rac in collective epithelial cell movements in vivo, which are important for both morphogenesis and metastasis, is therefore difficult to predict. Recently, photoactivatable analogues of Rac (PA-Rac) have been developed, allowing rapid and reversible activation or inactivation of Rac using light. In cultured single cells, light-activated Rac leads to focal membrane ruffling, protrusion and migration. Here we show that focal activation of Rac is also sufficient to polarize an entire group of cells in vivo, specifically the border cells of the Drosophila ovary. Moreover, activation or inactivation of Rac in one cell of the cluster caused a dramatic response in the other cells, suggesting that the cells sense direction as a group according to relative levels of Rac activity. Communication between cells of the cluster required Jun amino-terminal kinase (JNK) but not guidance receptor signalling. These studies further show that photoactivatable proteins are effective tools in vivo.
1464.

Structure and function of plant photoreceptors.

blue near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review Background
Annu Rev Plant Biol, 25 Jan 2010 DOI: 10.1146/annurev-arplant-042809-112259 Link to full text
Abstract: Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
1465.

Light activation as a method of regulating and studying gene expression.

blue LOV domains Review
Curr Opin Chem Biol, 24 Oct 2009 DOI: 10.1016/j.cbpa.2009.09.026 Link to full text
Abstract: Recently, several advances have been made in the activation and deactivation of gene expression using light. These developments are based on the application of small molecule inducers of gene expression, antisense- or RNA interference-mediated gene silencing, and the photochemical control of proteins regulating gene function. The majority of the examples employ a classical 'caging technology', through the chemical installation of a light-removable protecting group on the biological molecule (small molecule, oligonucleotide, or protein) of interest and rendering it inactive. UV light irradiation then removes the caging group and activates the molecule, enabling control over gene activity with high spatial and temporal resolution.
1466.

Induction of protein-protein interactions in live cells using light.

blue FKF1/GI HEK293T NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Nat Biotechnol, 4 Oct 2009 DOI: 10.1038/nbt.1569 Link to full text
Abstract: Protein-protein interactions are essential for many cellular processes. We have developed a technology called light-activated dimerization (LAD) to artificially induce protein hetero- and homodimerization in live cells using light. Using the FKF1 and GIGANTEA (GI) proteins of Arabidopsis thaliana, we have generated protein tags whose interaction is controlled by blue light. We demonstrated the utility of this system with LAD constructs that can recruit the small G-protein Rac1 to the plasma membrane and induce the local formation of lamellipodia in response to focal illumination. We also generated a light-activated transcription factor by fusing domains of GI and FKF1 to the DNA binding domain of Gal4 and the transactivation domain of VP16, respectively, showing that this technology is easily adapted to other systems. These studies set the stage for the development of light-regulated signaling molecules for controlling receptor activation, synapse formation and other signaling events in organisms.
1467.

Mechanism-based tuning of a LOV domain photoreceptor.

blue LOV domains Background
Nat Chem Biol, 30 Aug 2009 DOI: 10.1038/nchembio.210 Link to full text
Abstract: Phototropin-like LOV domains form a cysteinyl-flavin adduct in response to blue light but show considerable variation in output signal and the lifetime of the photo-adduct signaling state. Mechanistic studies of the slow-cycling fungal LOV photoreceptor Vivid (VVD) reveal the importance of reactive cysteine conformation, flavin electronic environment and solvent accessibility for adduct scission and thermal reversion. Proton inventory, pH effects, base catalysis and structural studies implicate flavin N(5) deprotonation as rate-determining for recovery. Substitutions of active site residues Ile74, Ile85, Met135 and Met165 alter photoadduct lifetimes by over four orders of magnitude in VVD, and similar changes in other LOV proteins show analogous effects. Adduct state decay rates also correlate with changes in conformational and oligomeric properties of the protein necessary for signaling. These findings link natural sequence variation of LOV domains to function and provide a means to design broadly reactive light-sensitive probes.
1468.

LOVely enzymes - towards engineering light-controllable biocatalysts.

blue LOV domains Review
Microb Biotechnol, 24 Aug 2009 DOI: 10.1111/j.1751-7915.2009.00140.x Link to full text
Abstract: Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue-light photoreceptors of the Light, Oxygen, Voltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to the respective effector domain. Furthermore, we describe the construction of LOV fusions to different effector domains, namely a dihydrofolate reductase from Escherichia coli and a lipase from Bacillus subtilis. Both fusion partners retained functionality, and alteration of enzyme activity by light was also demonstrated. Hence, it appears that fusion of LOV photoreceptors to functional enzyme target sites via appropriate linker structures may represent a straightforward strategy to design light controllable biocatalysts.
1469.

A genetically encoded photoactivatable Rac controls the motility of living cells.

blue AsLOV2 3T3MEF HEK293 HeLa in vitro Control of cytoskeleton / cell motility / cell shape
Nature, 19 Aug 2009 DOI: 10.1038/nature08241 Link to full text
Abstract: The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
1470.

Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase.

blue BLUF domains Background
Nature, 18 Jun 2009 DOI: 10.1038/nature07966 Link to full text
Abstract: The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain-domain interfaces.
1471.

Structure and insight into blue light-induced changes in the BlrP1 BLUF domain.

blue BLUF domains Background
Biochemistry, 31 Mar 2009 DOI: 10.1021/bi802237r Link to full text
Abstract: BLUF domains (sensors of blue light using flavin adenine dinucleotide) are a group of flavin-containing blue light photosensory domains from a variety of bacterial and algal proteins. While spectroscopic studies have indicated that these domains reorganize their interactions with an internally bound chromophore upon illumination, it remains unclear how these are converted into structural and functional changes. To address this, we have solved the solution structure of the BLUF domain from Klebsiella pneumoniae BlrP1, a light-activated c-di-guanosine 5'-monophosphate phosphodiesterase which consists of a sensory BLUF and a catalytic EAL (Glu-Ala-Leu) domain [Schmidt et. al. (2008) J. Bacteriol. 187, 4774-4781]. Our dark state structure of the sensory domain shows that it adopts a standard BLUF domain fold followed by two C-terminal alpha helices which adopt a novel orientation with respect to the rest of the domain. Comparison of NMR spectra acquired under dark and light conditions suggests that residues throughout the BlrP1 BLUF domain undergo significant light-induced chemical shift changes, including sites clustered on the beta(4)beta(5) loop, beta(5) strand, and alpha(3)alpha(4) loop. Given that these changes were observed at several sites on the helical cap, over 15 A from chromophore, our data suggest a long-range signal transduction process in BLUF domains.
1472.

Oligomeric structure of LOV domains in Arabidopsis phototropin.

blue LOV domains Background
FEBS Lett, 21 Jan 2009 DOI: 10.1016/j.febslet.2009.01.019 Link to full text
Abstract: Oligomeric structures of the four LOV domains in Arabidopsis phototropin1 (phot1) and 2 (phot2) were studied using crosslinking. Both LOV1 domains of phot1 and phot2 form a dimer independently on the light conditions, suggesting that the LOV1 domain can be a stable dimerization site of phot in vivo. In contrast, phot1-LOV2 is in a monomer-dimer equilibrium and phot2-LOV2 exists as a monomer in the dark. Blue light-induced a slight increase in the monomer population in phot1-LOV2, suggesting a possible blue light-inducible dissociation of dimers. Furthermore, blue light caused a band shift of the phot2-LOV2 monomer. CD spectra revealed the unfolding of helices and the formation of strand structures. Both light-induced changes were reversible in the dark.
1473.

A conserved glutamine plays a central role in LOV domain signal transmission and its duration.

blue LOV domains Background
Biochemistry, 30 Dec 2008 DOI: 10.1021/bi801430e Link to full text
Abstract: Light is a key stimulus for plant biological functions, several of which are controlled by light-activated kinases known as phototropins, a group of kinases that contain two light-sensing domains (LOV, light-oxygen-voltage domains) and a C-terminal serine/threonine kinase domain. The second sensory domain, LOV2, plays a key role in regulating kinase enzymatic activity via the photochemical formation of a covalent adduct between a LOV2 cysteine residue and an internally bound flavin mononucleotide (FMN) chromophore. Subsequent conformational changes in LOV2 lead to the unfolding of a peripheral Jalpha helix and, ultimately, phototropin kinase activation. To date, the mechanism coupling bond formation and helix dissociation has remained unclear. Previous studies found that a conserved glutamine residue [Q513 in the Avena sativa phototropin 1 LOV2 (AsLOV2) domain] switches its hydrogen bonding pattern with FMN upon light stimulation. Located in the immediate vicinity of the FMN binding site, this Gln residue is provided by the Ibeta strand that interacts with the Jalpha helix, suggesting a route for signal propagation from the core of the LOV domain to its peripheral Jalpha helix. To test whether Q513 plays a key role in tuning the photochemical and transduction properties of AsLOV2, we designed two point mutations, Q513L and Q513N, and monitored the effects on the chromophore and protein using a combination of UV-visible absorbance and circular dichroism spectroscopy, limited proteolysis, and solution NMR. The results show that these mutations significantly dampen the changes between the dark and lit state AsLOV2 structures, leaving the protein in a pseudodark state (Q513L) or a pseudolit state (Q513N). Further, both mutations changed the photochemical properties of this receptor, in particular the lifetime of the photoexcited signaling states. Together, these data establish that this residue plays a central role in both spectral tuning and signal propagation from the core of the LOV domain through the Ibeta strand to the peripheral Jalpha helix.
1474.

Design and signaling mechanism of light-regulated histidine kinases.

blue YtvA E. coli in vitro Signaling cascade control Extracellular optogenetics
J Mol Biol, 14 Dec 2008 DOI: 10.1016/j.jmb.2008.12.017 Link to full text
Abstract: Signal transduction proteins are organized into sensor (input) domains that perceive a signal and, in response, regulate the biological activity of effector (output) domains. We reprogrammed the input signal specificity of a normally oxygen-sensitive, light-inert histidine kinase by replacing its chemosensor domain by a light-oxygen-voltage photosensor domain. Illumination of the resultant fusion kinase YF1 reduced net kinase activity by approximately 1000-fold in vitro. YF1 also controls gene expression in a light-dependent manner in vivo. Signals are transmitted from the light-oxygen-voltage sensor domain to the histidine kinase domain via a 40 degrees -60 degrees rotational movement within an alpha-helical coiled-coil linker; light is acting as a rotary switch. These signaling principles are broadly applicable to domains linked by alpha-helices and to chemo- and photosensors. Conserved sequence motifs guide the rational design of light-regulated variants of histidine kinases and other proteins.
1475.

Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.

blue Cryptochromes Background
Science, 6 Nov 2008 DOI: 10.1126/science.1163927 Link to full text
Abstract: Cryptochromes (CRY) are photolyase-like blue-light receptors that mediate light responses in plants and animals. How plant cryptochromes act in response to blue light is not well understood. We report here the identification and characterization of the Arabidopsis CIB1 (cryptochrome-interacting basic-helix-loop-helix) protein. CIB1 interacts with CRY2 (cryptochrome 2) in a blue light-specific manner in yeast and Arabidopsis cells, and it acts together with additional CIB1-related proteins to promote CRY2-dependent floral initiation. CIB1 binds to G box (CACGTG) in vitro with a higher affinity than its interaction with other E-box elements (CANNTG). However, CIB1 stimulates FT messenger RNA expression, and it interacts with chromatin DNA of the FT gene that possesses various E-box elements except G box. We propose that the blue light-dependent interaction of cryptochrome(s) with CIB1 and CIB1-related proteins represents an early photoreceptor signaling mechanism in plants.
Submit a new publication to our database