Showing 101 - 115 of 115 results
101.
An optimized optogenetic clustering tool for probing protein interaction and function.
Abstract:
The Arabidopsis photoreceptor cryptochrome 2 (CRY2) was previously used as an optogenetic module, allowing spatiotemporal control of cellular processes with light. Here we report the development of a new CRY2-derived optogenetic module, 'CRY2olig', which induces rapid, robust, and reversible protein oligomerization in response to light. Using this module, we developed a novel protein interaction assay, Light-Induced Co-clustering, that can be used to interrogate protein interaction dynamics in live cells. In addition to use probing protein interactions, CRY2olig can also be used to induce and reversibly control diverse cellular processes with spatial and temporal resolution. Here we demonstrate disrupting clathrin-mediated endocytosis and promoting Arp2/3-mediated actin polymerization with light. These new CRY2-based approaches expand the growing arsenal of optogenetic strategies to probe cellular function.
102.
Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.
Abstract:
The function of many eukaryotic proteins is regulated by highly dynamic changes in their nucleocytoplasmic distribution. The ability to precisely and reversibly control nuclear translocation would, therefore, allow dissecting and engineering cellular networks. Here we develop a genetically encoded, light-inducible nuclear localization signal (LINuS) based on the LOV2 domain of Avena sativa phototropin 1. LINuS is a small, versatile tag, customizable for different proteins and cell types. LINuS-mediated nuclear import is fast and reversible, and can be tuned at different levels, for instance, by introducing mutations that alter AsLOV2 domain photo-caging properties or by selecting nuclear localization signals (NLSs) of various strengths. We demonstrate the utility of LINuS in mammalian cells by controlling gene expression and entry into mitosis with blue light.
103.
Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
Abstract:
Perturbations in the concentration of a specific protein are often used to study and control biological networks. The ability to "dial-in" and programmatically control the concentration of a desired protein in cultures of cells would be transformative for applications in research and biotechnology. We developed a culturing apparatus and feedback control scheme which, in combination with an optogenetic system, allows us to generate defined perturbations in the intracellular concentration of a specific protein in microbial cell culture. As light can be easily added and removed, we can control protein concentration in culture more dynamically than would be possible with long-lived chemical inducers. Control of protein concentration is achieved by sampling individual cells from the culture apparatus, imaging and quantifying protein concentration, and adjusting the inducing light appropriately. The culturing apparatus can be operated as a chemostat, allowing us to precisely control microbial growth and providing cell material for downstream assays. We illustrate the potential for this technology by generating fixed and time-varying concentrations of a specific protein in continuous steady-state cultures of the model organism Saccharomyces cerevisiae. We anticipate that this technology will allow for quantitative studies of biological networks as well as external tuning of synthetic gene circuits and bioprocesses.
104.
A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast.
Abstract:
Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B- phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein's activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.
105.
A LOV2 domain-based optogenetic tool to control protein degradation and cellular function.
Abstract:
Light perception is indispensable for plants to respond adequately to external cues and is linked to proteolysis of key transcriptional regulators. To provide synthetic light control of protein stability, we developed a generic photosensitive degron (psd) module combining the light-reactive LOV2 domain of Arabidopsis thaliana phot1 with the murine ornithine decarboxylase-like degradation sequence cODC1. Functionality of the psd module was demonstrated in the model organism Saccharomyces cerevisiae. Generation of conditional mutants, light regulation of cyclin-dependent kinase activity, light-based patterning of cell growth, and yeast photography exemplified its versatility. In silico modeling of psd module behavior increased understanding of its characteristics. This engineered degron module transfers the principle of light-regulated degradation to nonplant organisms. It will be highly beneficial to control protein levels in biotechnological or biomedical applications and offers the potential to render a plethora of biological processes light-switchable.
106.
Ultraviolet-B-mediated induction of protein-protein interactions in mammalian cells.
Abstract:
Light-sensitive proteins are useful tools to control protein localization, activation and gene expression, but are currently limited to excitation with red or blue light. Here we report a novel optogenetic system based on the ultraviolet-B-dependent interaction of the Arabidopsis ultraviolet-B photoreceptor UVR8 with COP1 that can be performed in visible light background. We use this system to induce nuclear accumulation of cytoplasmic green fluorescent protein fused to UVR8 in cells expressing nuclear COP1, and to recruit a nucleoplasmic red fluorescent protein fused to COP1 to chromatin in cells expressing UVR8-H2B. We also show that ultraviolet-B-dependent interactions between DNA-binding and transcription activation domains result in a linear induction of gene expression. The UVR8-COP1 interactions in mammalian cells can be induced using subsecond pulses of ultraviolet-B light and last several hours. As UVR8 photoperception is based on intrinsic tryptophan residues, these interactions do not depend on the addition of an exogenous chromophore.
107.
Optogenetic control of transcription in zebrafish.
Abstract:
Light inducible protein-protein interactions are powerful tools to manipulate biological processes. Genetically encoded light-gated proteins for controlling precise cellular behavior are a new and promising technology, called optogenetics. Here we exploited the blue light-induced transcription system in yeast and zebrafish, based on the blue light dependent interaction between two plant proteins, blue light photoreceptor Cryptochrome 2 (CRY2) and the bHLH transcription factor CIB1 (CRY-interacting bHLH 1). We demonstrate the utility of this system by inducing rapid transcription suppression and activation in zebrafish.
108.
Light-mediated control of DNA transcription in yeast.
Abstract:
A variety of methods exist for inducible control of DNA transcription in yeast. These include the use of native yeast promoters or regulatory elements that are responsive to small molecules such as galactose, methionine, and copper, or engineered systems that allow regulation by orthogonal small molecules such as estrogen. While chemically regulated systems are easy to use and can yield high levels of protein expression, they often provide imprecise control over protein levels. Moreover, chemically regulated systems can affect many other proteins and pathways in yeast, activating signaling pathways or physiological responses. Here, we describe several methods for light mediated control of DNA transcription in vivo in yeast. We describe methodology for using a red light and phytochrome dependent system to induce transcription of genes under GAL1 promoter control, as well as blue light/cryptochrome dependent systems to control transcription of genes under GAL1 promoter or LexA operator control. Light is dose dependent, inexpensive to apply, easily delivered, and does not interfere with cellular pathways, and thus has significant advantages over chemical systems.
109.
Designing photoswitchable peptides using the AsLOV2 domain.
Abstract:
Photocontrol of functional peptides is a powerful tool for spatial and temporal control of cell signaling events. We show that the genetically encoded light-sensitive LOV2 domain of Avena Sativa phototropin 1 (AsLOV2) can be used to reversibly photomodulate the affinity of peptides for their binding partners. Sequence analysis and molecular modeling were used to embed two peptides into the Jα helix of the AsLOV2 domain while maintaining AsLOV2 structure in the dark but allowing for binding to effector proteins when the Jα helix unfolds in the light. Caged versions of the ipaA and SsrA peptides, LOV-ipaA and LOV-SsrA, bind their targets with 49- and 8-fold enhanced affinity in the light, respectively. These switches can be used as general tools for light-dependent colocalization, which we demonstrate with photo-activable gene transcription in yeast.
110.
TULIPs: tunable, light-controlled interacting protein tags for cell biology.
Abstract:
Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.
111.
In silico feedback for in vivo regulation of a gene expression circuit.
Abstract:
We show that difficulties in regulating cellular behavior with synthetic biological circuits may be circumvented using in silico feedback control. By tracking a circuit's output in Saccharomyces cerevisiae in real time, we precisely control its behavior using an in silico feedback algorithm to compute regulatory inputs implemented through a genetically encoded light-responsive module. Moving control functions outside the cell should enable more sophisticated manipulation of cellular processes whenever real-time measurements of cellular variables are possible.
112.
Rapid blue-light-mediated induction of protein interactions in living cells.
Abstract:
Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
113.
A switchable light-input, light-output system modelled and constructed in yeast.
Abstract:
Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input to this regulatory module allows dynamic control of a light-emitting LUCIFERASE reporter gene, which we detect by real-time imaging of yeast colonies on solid media.
114.
Activation of protein splicing with light in yeast.
Abstract:
Spatiotemporal regulation of protein function is a key feature of living systems; experimental tools that provide such control are of great utility. Here we report a genetically encoded system for controlling a post-translational process, protein splicing, with light. Studies in Saccharomyces cerevisiae demonstrate that fusion of a photodimerization system from Arabidopsis thaliana to an artificially split intein permits rapid activation of protein splicing to yield a new protein product.
115.
A light-switchable gene promoter system.
Abstract:
Regulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes. Most of these rely on the administration of either exogenous chemicals or heat shock. Despite the general success of many of these systems, the potential for problems, such as toxic, unintended, or pleiotropic effects of the inducing chemical or treatment, can impose limitations on their use. We have developed a promoter system that can be induced, rapidly and reversibly, by short pulses of light. This system is based on the known red light-induced binding of the plant photoreceptor phytochrome to the protein PIF3 and the reversal of this binding by far-red light. We show here that yeast cells expressing two chimeric proteins, a phytochrome-GAL4-DNA-binding-domain fusion and a PIF3-GAL4-activation-domain fusion, are induced by red light to express selectable or "scorable" marker genes containing promoters with a GAL4 DNA-binding site, and that this induction is rapidly abrogated by subsequent far-red light. We further show that the extent of induction can be controlled precisely by titration of the number of photons delivered to the cells by the light pulse. Thus, this system has the potential to provide rapid, noninvasive, switchable control of the expression of a desired gene to a preselected level in any suitable cell by simple exposure to a light signal.