Showing 1126 - 1150 of 1813 results
1126.
Chronic optogenetic induction of stress granules is cytotoxic and reveals the evolution of ALS-FTD pathology.
Abstract:
Stress granules (SGs) are non-membrane-bound RNA-protein granules that assemble through phase separation in response to cellular stress. Disturbances in SG dynamics have been implicated as a primary driver of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), suggesting the hypothesis that these diseases reflect an underlying disturbance in the dynamics and material properties of SGs. However, this concept has remained largely untestable in available models of SG assembly, which require the confounding variable of exogenous stressors. Here we introduce a light-inducible SG system, termed OptoGranules, based on optogenetic multimerization of G3BP1, which is an essential scaffold protein for SG assembly. In this system, which permits experimental control of SGs in living cells in the absence of exogenous stressors, we demonstrate that persistent or repetitive assembly of SGs is cytotoxic and is accompanied by the evolution of SGs to cytoplasmic inclusions that recapitulate the pathology of ALS-FTD.
1127.
Optically inducible membrane recruitment and signaling systems.
Abstract:
Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
1128.
Membrane-Associated, Not Cytoplasmic or Nuclear, FGFR1 Induces Neuronal Differentiation.
Abstract:
The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells. Blue light stimulation elevated the pERK and pPLCγ1 levels in membrane-opto-FGFR1-transfected cells similarly to ligand-induced receptor activation; however, no changes in pAKT levels were observed. PC12 cells transfected with membrane-opto-FGFR1 exhibited significantly longer neurites after light stimulation than after growth factor treatment, and significantly more neurites extended from their cell bodies. The activation of cytoplasmic FGFR1 kinase enhanced ERK signaling in HEK293 cells but not in PC12 cells and did not induce neuronal differentiation. The stimulation of FGFR1 kinase in the nucleus also did not result in signaling changes or neurite outgrowth. We conclude that FGFR1 kinase needs to be associated with membranes to induce the differentiation of PC12 cells mainly via ERK activation.
1129.
Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.
Abstract:
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
1130.
Optogenetic perturbation of the biochemical pathways that control cell behavior.
Abstract:
Optogenetic tools provide a level of spatial and temporal resolution needed to shed new light on dynamic intercellular processes. In this chapter we outline specific protocols for applying these tools to cell motility (optogenetic cofilin), apoptosis [optogenetic Bcl-like protein 4 (Bax)], and protein kinase-mediated signaling pathways [optogenetic cAMP-dependent protein kinase (PKA)]. The activity of these optogenetic species is regulated by the light-mediated dimerization of a cryptochrome/Cib protein pair, which controls the intracellular positioning of the protein of interest. The light induced recruitment of cofilin to the cytoskeleton is utilized for directed migration studies and filopodial dynamics. Light-triggered migration of Bax to the outer mitochondrial membrane induces cellular collapse and eventual apoptosis. Finally, the light-mediated movement of PKA to specific intracellular compartments offers the means to assess the consequences of PKA activity in a site-specific fashion via phosphoproteomic analysis.
1131.
Design, construction, and validation of optogenetic proteins.
Abstract:
Cellular optogenetics employs light-regulated, genetically encoded protein actuators to perturb cellular signaling with unprecedented spatial and temporal control. Here, we present a potentially generalized approach for transforming a given protein of interest (POI) into an optogenetic species. We describe the rational and methods by which we developed three different optogenetic POIs utilizing the Cry2-Cib photodimerizing pair. The process pipeline is highlighted by (1) developing a low level, constitutively active POI that is independent of endogenous regulation, (2) fusion of the mutant protein of interest to an optogenetic photodimerizing system, and (3) light-mediated recruitment of the light-responsive POI to specific subcellular regions.
1132.
Neurotrophin receptor tyrosine kinases regulated with near-infrared light.
Abstract:
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
1133.
B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology.
Abstract:
Vitamin B12-based photoreceptor proteins sense ultraviolet (UV), blue or green light using 5'-deoxyadenosylcobalamin (AdoCbl). The prototype of this widespread bacterial photoreceptor family, CarH, controls light-dependent gene expression in photoprotective cellular responses. It represses transcription in the dark by binding to operator DNA as an AdoCbl-bound tetramer, whose disruption by light relieves operator binding to allow transcription. Structures of the 'dark' (free and DNA-bound) and 'light' CarH states and studies on the unusual AdoCbl photochemistry have provided fundamental insights into these photoreceptors. We highlight these, the plasticity within a conserved mode of action among CarH homologs, their distribution, and their promising applications in optogenetics and synthetic biology.
1134.
Controlling protein conformation with light.
Abstract:
Optogenetics, genetically encoded engineering of proteins to respond to light, has enabled precise control of the timing and localization of protein activity in live cells and for specific cell types in animals. Light-sensitive ion channels have become well established tools in neurobiology, and a host of new methods have recently enabled the control of other diverse protein structures as well. This review focuses on approaches to switch proteins between physiologically relevant, naturally occurring conformations using light, accomplished by incorporating light-responsive engineered domains that sterically and allosterically control the active site.
1135.
Optogenetic control of cell morphogenesis on protein micropatterns.
Abstract:
Cell morphogenesis is critical for embryonic development, tissue formation, and wound healing. Our ability to manipulate endogenous mechanisms to control cell shape, however, remains limited. Here we combined surface micropatterning of adhesion molecules with optogenetic activation of intracellular signaling pathways to control the nature and morphology of cellular protrusions. We employed geometry-dependent pre-organization of cytoskeletal structures together with acute activation of signaling pathways that control actin assembly to create a tool capable of generating membrane protrusions at defined cellular locations. Further, we find that the size of microfabricated patterns of adhesion molecules influences the molecular mechanism of cell protrusion: larger patterns enable cells to create actin-filled lamellipodia while smaller patterns promote formation of spherical blebs. Optogenetic perturbation of signaling pathways in these cells changes the size of blebs and convert them into lamellipodia. Our results demonstrate how the coordinated manipulation of adhesion geometry and cytoskeletal dynamics can be used to control membrane protrusion and cell morphogenesis.
1136.
RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.
-
Mann, JR
-
Gleixner, AM
-
Mauna, JC
-
Gomes, E
-
DeChellis-Marks, MR
-
Needham, PG
-
Copley, KE
-
Hurtle, B
-
Portz, B
-
Pyles, NJ
-
Guo, L
-
Calder, CB
-
Wills, ZP
-
Pandey, UB
-
Kofler, JK
-
Brodsky, JL
-
Thathiah, A
-
Shorter, J
-
Donnelly, CJ
Abstract:
TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.
1137.
Biological signal generators: integrating synthetic biology tools and in silico control.
Abstract:
Biological networks sense extracellular stimuli and generate appropriate outputs within the cell that determine cellular response. Biological signal generators are becoming an important tool for understanding how information is transmitted in these networks and controlling network behavior. Signal generators produce well-defined, dynamic, intracellular signals of important network components, such as kinase activity or the concentration of a specific transcription factor. Synthetic biology tools coupled with in silico control have enabled the construction of these sophisticated biological signal generators. Here we review recent advances in biological signal generator construction and their use in systems biology studies. Challenges for constructing signal generators for a wider range of biological networks and generalizing their use are discussed.
1138.
Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome.
Abstract:
Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the know interaction partners, and could filter out all other proteins.
1139.
Photodimerization systems for regulating protein-protein interactions with light.
Abstract:
Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
1140.
Mimicking Adhesion in Minimal Synthetic Cells.
Abstract:
Cell adhesions to the extracellular matrix and to neighboring cells are fundamental to cell behavior and have also been implemented into minimal synthetic cells, which are assembled from molecular building blocks from the bottom-up. Investigating adhesion in cell mimetic models with reduced complexity provides a better understanding of biochemical and biophysical concepts underlying the cell adhesion machinery. In return, implementing cell-matrix and cell-cell adhesions into minimal synthetic cells allows reconstructing cell functions associated with cell adhesions including cell motility, multicellular prototissues, fusion of vesicles, and the self-sorting of different cell types. Cell adhesions have been mimicked using both the native cell receptors and reductionist mimetics providing a variety of specific, reversible, dynamic, and spatiotemporally controlled interactions. This review gives an overview of different minimal adhesion modules integrated into different minimal synthetic cells drawing inspiration from cell and colloidal science.
1141.
Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration.
Abstract:
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
1142.
Light-Induced Protein Clustering for Optogenetic Interference and Protein Interaction Analysis in Drosophila S2 Cells.
Abstract:
Drosophila Schneider 2 (S2) cells are a simple and powerful system commonly used in cell biology because they are well suited for high resolution microscopy and RNAi-mediated depletion. However, understanding dynamic processes, such as cell division, also requires methodology to interfere with protein function with high spatiotemporal control. In this research study, we report the adaptation of an optogenetic tool to Drosophila S2 cells. Light-activated reversible inhibition by assembled trap (LARIAT) relies on the rapid light-dependent heterodimerization between cryptochrome 2 (CRY2) and cryptochrome-interacting bHLH 1 (CIB1) to form large protein clusters. An anti-green fluorescent protein (GFP) nanobody fused with CRY2 allows this method to quickly trap any GFP-tagged protein in these light-induced protein clusters. We evaluated clustering kinetics in response to light for different LARIAT modules, and showed the ability of GFP-LARIAT to inactivate the mitotic protein Mps1 and to disrupt the membrane localization of the polarity regulator Lethal Giant Larvae (Lgl). Moreover, we validated light-induced co-clustering assays to assess protein-protein interactions in S2 cells. In conclusion, GFP-based LARIAT is a versatile tool to answer different biological questions, since it enables probing of dynamic processes and protein-protein interactions with high spatiotemporal resolution in Drosophila S2 cells.
1143.
Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.
Abstract:
The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.
1144.
Developmental Erk Signaling Illuminated.
Abstract:
How a small number of signaling pathways can be re-used in distinct embryonic contexts to control different fates remains unclear. In this issue of Developmental Cell, Johnson and Toettcher (2019) use optogenetic approaches to explore how different dynamic ERK signaling states control specific developmental fates in the Drosophila embryo.
1145.
Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.
Abstract:
This chapter describes the use of optogenetic heterodimerization in single cells within whole-vertebrate embryos. This method allows the use of light to reversibly bind together an "anchor" protein and a "bait" protein. Proteins can therefore be directed to specific subcellular compartments, altering biological processes such as cell polarity and signaling. I detail methods for achieving transient expression of fusion proteins encoding the phytochrome heterodimerization system in early zebrafish embryos (Buckley et al., Dev Cell 36(1):117-126, 2016) and describe the imaging parameters used to achieve subcellular light patterning.
1146.
Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation.
Abstract:
Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.
1147.
Synthetic Control of Protein Degradation during Cell Proliferation and Developmental Processes.
Abstract:
Synthetic tools for the control of protein function are valuable for biomedical research to characterize cellular functions of essential proteins or if a rapid switch in protein activity is necessary. The ability to tune protein activity precisely opens another level of investigations that is not available with gene deletion mutants. Control of protein stability is a versatile approach to influence the activity of a target protein by its cellular abundance. Diverse strategies have been developed to achieve efficient proteolysis using external inducers or differentiation-coupled signals. The latter is especially important for the inactivation of a protein during a developmental process. Recently, several approaches to achieve this have been engineered. In this article, we present current synthetic tools for regulation of protein stability that allow fine-tuning of protein abundance, their advantages and disadvantages with an emphasis on methods applicable in the context of cell differentiation and development. We give an outlook toward future developments and discuss main applications of these tools.
1148.
Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria.
Abstract:
Modulation of liquid-liquid and liquid-hydrogel phase transitions is central to avoid the cytotoxic aggregation of proteins in eukaryotic cells, but knowledge on its relevance in bacteria is limited. Here the power of optogenetics to engineer proteins as light-responsive switches has been used to control the balance between solubility and aggregation for LOV2-WH1, a chimera between the plant blue light-responsive domain LOV2 and the bacterial prion-like protein RepA-WH1. These proteins were first linked by fusing, as a continuous α-helix, the C-terminal photo-transducer Jα helix in LOV2 with the N-terminal domain-closure α1 helix in RepA-WH1, and then improved for light-responsiveness by including mutations in the Jα moiety. In the darkness and in a crowded solution in vitro, LOV2-WH1 nucleates the irreversible assembly of amyloid fibers into a hydrogel. However, under blue light illumination LOV2-WH1 assembles as soluble oligomers. When expressed in Escherichia coli, LOV2-WH1 forms in the darkness large intracellular amyloid inclusions compatible with bacterial proliferation. Strikingly, under blue light LOV2-WH1 aggregates decrease in size while they become detrimental for bacterial growth. LOV2-WH1 optogenetics governs the assembly of mutually exclusive inert amyloid fibers or cytotoxic oligomers, thus enabling the navigation of the conformational landscape of protein amyloidogenesis to generate potential photo-activated anti-bacterial devices (optobiotics).
1149.
Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.
-
Pan, H
-
Wang, H
-
Yu, J
-
Huang, X
-
Hao, Y
-
Zhang, C
-
Ji, W
-
Yang, M
-
Gong, X
-
Wu, X
-
Chang, J
Abstract:
In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The implantable, wireless, recyclable, less-invasive and biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids, for protein import; upconversion rods-encapsulated flexible capsule (UCRs-capsule), for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (∼3.5 mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.
1150.
Cell-machine interfaces for characterizing gene regulatory network dynamics.
Abstract:
Gene regulatory networks and the dynamic responses they produce offer a wealth of information about how biological systems process information about their environment. Recently, researchers interested in dissecting these networks have been outsourcing various parts of their experimental workflow to computers. Here we review how, using microfluidic or optogenetic tools coupled with fluorescence imaging, it is now possible to interface cells and computers. These platforms enable scientists to perform informative dynamic stimulations of genetic pathways and monitor their reaction. It is also possible to close the loop and regulate genes in real time, providing an unprecedented view of how signals propagate through the network. Finally, we outline new tools that can be used within the framework of cell-machine interfaces.