Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 1031 results
76.

Spatiotemporal Organization of Functional Cargoes by Light-Switchable Condensation in Escherichia coli Cells.

blue iLID E. coli Organelle manipulation
JACS Au, 29 Mar 2024 DOI: 10.1021/jacsau.4c00017 Link to full text
Abstract: Biomolecular condensates are dynamic subcellular compartments that lack surrounding membranes and can spatiotemporally organize the cellular biochemistry of eukaryotic cells. However, such dynamic organization has not been realized in prokaryotes that naturally lack organelles, and strategies are urgently needed for dynamic biomolecular compartmentalization. Here we develop a light-switchable condensate system for on-demand dynamic organization of functional cargoes in the model prokaryotic Escherichia coli cells. The condensate system consists of two modularly designed and genetically encoded fusions that contain a condensation-enabling scaffold and a functional cargo fused to the blue light-responsive heterodimerization pair, iLID and SspB, respectively. By appropriately controlling the biogenesis of the protein fusions, the condensate system allows rapid recruitment and release of cargo proteins within seconds in response to light, and this process is also reversible and repeatable. Finally, the system is demonstrated to dynamically control the subcellular localization of a cell division inhibitor, SulA, which enables the reversible regulation of cell morphologies. Therefore, this study provides a new strategy to dynamically control cellular processes by harnessing light-controlled condensates in prokaryotic cells.
77.

ORAI Ca2+ Channels in Cancers and Therapeutic Interventions.

blue Cryptochromes LOV domains Review
Biomolecules, 29 Mar 2024 DOI: 10.3390/biom14040417 Link to full text
Abstract: The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
78.

Lighting the way: recent developments and applications in molecular optogenetics.

blue green red Cryptochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 29 Mar 2024 DOI: 10.1016/j.copbio.2024.103126 Link to full text
Abstract: Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
79.

Inteins: A Swiss army knife for synthetic biology.

blue LOV domains Review
Biotechnol Adv, 27 Mar 2024 DOI: 10.1016/j.biotechadv.2024.108349 Link to full text
Abstract: Inteins are proteins found in nature that execute protein splicing. Among them, split inteins stand out for their versatility and adaptability, presenting creative solutions for addressing intricate challenges in various biological applications. Their exquisite attributes, including compactness, reliability, orthogonality, low toxicity, and irreversibility, make them of interest to various fields including synthetic biology, biotechnology and biomedicine. In this review, we delve into the inherent challenges of using inteins, present approaches for overcoming these challenges, and detail their reliable use for specific cellular tasks. We will discuss the use of conditional inteins in areas like cancer therapy, drug screening, patterning, infection treatment, diagnostics and biocontainment. Additionally, we will underscore the potential of inteins in executing basic logical operations with practical implications. We conclude by showcasing their potential in crafting complex genetic circuits for performing computations and feedback control that achieves robust perfect adaptation.
80.

Optical Control over Liquid–Liquid Phase Separation.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Small Methods, 26 Mar 2024 DOI: 10.1002/smtd.202301724 Link to full text
Abstract: Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
81.

Opticool: Cutting-edge transgenic optical tools.

blue green near-infrared red UV violet iLID BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
PLoS Genet, 22 Mar 2024 DOI: 10.1371/journal.pgen.1011208 Link to full text
Abstract: Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
82.

Synthetic Biology Meets Ca2+ Release-Activated Ca2+ Channel-Dependent Immunomodulation.

blue red iLID Cryptochromes LOV domains Phytochromes Review
Cells, 7 Mar 2024 DOI: 10.3390/cells13060468 Link to full text
Abstract: Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
83.

Light-directed evolution of dynamic, multi-state, and computational protein functionalities.

blue red EL222 PhyB/PIF3 S. cerevisiae Cell cycle control Transgene expression
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.02.28.582517 Link to full text
Abstract: Directed evolution is a powerful method in biological engineering. Current approaches were devised for evolving steady-state properties such as enzymatic activity or fluorescence intensity. A fundamental problem remains how to evolve dynamic, multi-state, or computational functionalities, e.g., folding times, on-off kinetics, state-specific activity, stimulus-responsiveness, or switching and logic capabilities. These require applying selection pressure on all of the states of a protein of interest (POI) and the transitions between them. We realized that optogenetics and cell cycle oscillations could be leveraged for a novel directed evolution paradigm (‘optovolution’) that is germane for this need: We designed a signaling cascade in budding yeast where optogenetic input switches the POI between off (0) and on (1) states. In turn, the POI controls a Cdk1 cyclin, which in the re-engineered cell cycle system is essential for one cell cycle stage but poisonous for another. Thus, the cyclin must oscillate (1-0-1-0…) for cell proliferation. In this system, evolution can act efficiently on the dynamics, transient states, and input-output relations of the POI in every cell cycle. Further, controlling the pacemaker, light, directs and tunes selection pressures. Optovolution is in vivo, continuous, self-selecting, and genetically robust. We first evolved two optogenetic systems, which relay 0/1 input to 0/1 output: We obtained 25 new variants of the widely used LOV transcription factor El222. These mutants were stronger, less leaky, or green- and red-responsive. The latter was conjectured to be impossible for LOV domains but is needed for multiplexing and lowering phototoxicity. Evolving the PhyB-Pif3 optogenetic system, we discovered that loss of YOR1 makes supplementing the expensive and unstable chromophore phycocyanobilin (PCB) unnecessary. Finally, we demonstrate the generality of the method by creating and evolving a destabilized rtTA transcription factor, which performs an AND operation between transcriptional and doxycycline input. Optovolution makes coveted, difficult-to-change protein functionalities evolvable.
84.

Dynamic Light-Induced Protein Patterns at Model Membranes.

blue iLID in vitro
J Vis Exp, 23 Feb 2024 DOI: 10.3791/66531 Link to full text
Abstract: The precise localization and activation of proteins at the cell membrane at a certain time gives rise to many cellular processes, including cell polarization, migration, and division. Thus, methods to recruit proteins to model membranes with subcellular resolution and high temporal control are essential when reproducing and controlling such processes in synthetic cells. Here, a method is described for fabricating light-regulated reversible protein patterns at lipid membranes with high spatiotemporal precision. For this purpose, we immobilize the photoswitchable protein iLID (improved light-inducible dimer) on supported lipid bilayers (SLBs) and on the outer membrane of giant unilamellar vesicles (GUVs). Upon local blue light illumination, iLID binds to its partner Nano (wild-type SspB) and allows the recruitment of any protein of interest (POI) fused to Nano from the solution to the illuminated area on the membrane. This binding is reversible in the dark, which provides dynamic binding and release of the POI. Overall, this is a flexible and versatile method for regulating the localization of proteins with high precision in space and time using blue light.
85.

Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.

blue iLID S. cerevisiae U-2 OS Organelle manipulation
Nat Chem, 21 Feb 2024 DOI: 10.1038/s41557-024-01456-6 Link to full text
Abstract: Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
86.

A temperature-inducible protein module for control of mammalian cell fate.

blue BcLOV4 HEK293T Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell death
bioRxiv, 19 Feb 2024 DOI: 10.1101/2024.02.19.581019 Link to full text
Abstract: Inducible protein switches are used throughout the biosciences to allow on-demand control of proteins in response to chemical or optical inputs. However, these inducers either cannot be controlled with precision in space and time or cannot be applied in optically dense settings, limiting their application in tissues and organisms. Here we introduce a protein module whose active state can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization through temperature), exists as a monomer in the cytoplasm at elevated temperatures but both oligomerizes and translocates to the plasma membrane when temperature is lowered. Using custom devices for rapid and high-throughput temperature control during live-cell microscopy, we find that the original Melt variant fully switches states between 28-32°C, and state changes can be observed within minutes of temperature changes. Melt was highly modular, permitting thermal control over diverse intracellular processes including signaling, proteolysis, and nuclear shuttling through straightforward end-to-end fusions with no further engineering. Melt was also highly tunable, giving rise to a library of Melt variants with switch point temperatures ranging from 30-40°C. The variants with higher switch points allowed control of molecular circuits between 37°C-41°C, a well-tolerated range for mammalian cells. Finally, Melt could thermally regulate important cell decisions over this range, including cytoskeletal rearrangement and apoptosis. Thus Melt represents a versatile thermogenetic module that provides straightforward, temperature-based, real-time control of mammalian cells with broad potential for biotechnology and biomedicine.
87.

Photocontrol of small GTPase Ras fused with a photoresponsive protein.

blue VfAU1-LOV in vitro Signaling cascade control
J Biochem, 15 Feb 2024 DOI: 10.1093/jb/mvae017 Link to full text
Abstract: The small GTPase Ras plays an important role in intracellular signal transduction and functions as a molecular switch. In this study, we used a photoresponsive protein as the molecular regulatory device to photoregulate Ras GTPase activity. Photo zipper (PZ), a variant of the photoresponsive protein Aureochrome1 developed by Hisatomi et al. (1-9) was incorporated into the C-terminus of Ras as a fusion protein. The three constructs of the Ras-PZ fusion protein had spacers of different lengths between Ras and PZ. They were designed using an Escherichia coli expression system. The Ras-PZ fusion proteins exhibited photoisomerization upon blue light irradiation and in the dark. Ras-PZ dimerized upon light irradiation. Moreover, Ras GTPase activity, which is accelerated by the Ras regulators guanine nucleotide exchange factors and GTPase-activating proteins, is controlled by photoisomerization. It has been suggested that light-responsive proteins are applicable to the photoswitching of the enzymatic activity of small GTPases as photoregulatory molecular devices.
88.

Optogenetic control of pheromone gradients reveals functional limits of mating behavior in budding yeast.

blue EL222 S. cerevisiae Signaling cascade control Endogenous gene expression
bioRxiv, 8 Feb 2024 DOI: 10.1101/2024.02.06.578657 Link to full text
Abstract: Cell-cell communication through diffusible signals allows distant cells to coordinate biological functions. Such coordination depends on the signal landscapes generated by emitter cells and the sensory capacities of receiver cells. In contrast to morphogen gradients in embryonic development, microbial signal landscapes occur in open space with variable cell densities, spatial distributions, and physical environments. How do microbes shape signal landscapes to communicate robustly under such circumstances remains an unanswered question. Here we combined quantitative spatial optogenetics with biophysical theory to show that in the mating system of budding yeast— where two mates communicate to fuse—signal landscapes convey demographic or positional information depending on the spatial organization of mating populations. This happens because α-factor pheromone and its mate-produced protease Bar1 have characteristic wide and narrow diffusion profiles, respectively. Functionally, MATα populations signal their presence as collectives, but not their position as individuals, and Bar1 is a sink of alpha-factor, capable of both density-dependent global attenuation and local gradient amplification. We anticipate that optogenetic control of signal landscapes will be instrumental to quantitatively understand the spatial behavior of natural and engineered cell-cell communication systems.
89.

Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter.

blue CRY2/CRY2 iLID HEK293T NCI-H3122
Cell Syst, 8 Feb 2024 DOI: 10.1016/j.cels.2024.01.005 Link to full text
Abstract: Protein clustering plays numerous roles in cell physiology and disease. However, protein oligomers can be difficult to detect because they are often too small to appear as puncta in conventional fluorescence microscopy. Here, we describe a fluorescent reporter strategy that detects protein clusters with high sensitivity called CluMPS (clusters magnified by phase separation). A CluMPS reporter detects and visually amplifies even small clusters of a binding partner, generating large, quantifiable fluorescence condensates. We use computational modeling and optogenetic clustering to demonstrate that CluMPS can detect small oligomers and behaves rationally according to key system parameters. CluMPS detected small aggregates of pathological proteins where the corresponding GFP fusions appeared diffuse. CluMPS also detected and tracked clusters of unmodified and tagged endogenous proteins, and orthogonal CluMPS probes could be multiplexed in cells. CluMPS provides a powerful yet straightforward approach to observe higher-order protein assembly in its native cellular context. A record of this paper's transparent peer review process is included in the supplemental information.
90.

Interplay of condensation and chromatin binding underlies BRD4 targeting.

blue iLID U-2 OS Organelle manipulation
bioRxiv, 7 Feb 2024 DOI: 10.1101/2024.02.07.579384 Link to full text
Abstract: Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is under-explored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcription factor BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
91.

Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.

blue green near-infrared red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
MedComm (2020), 4 Feb 2024 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: [This corrects the article DOI: 10.1002/mco2.226.].
92.

Epstein-Barr Virus Promotes Tumorigenicity and Worsens Hodgkin Lymphoma Prognosis by Activating JAK/STAT and NF-κB Signaling Pathways.

blue red DmPAC PAL E. coli Transgene expression Multichromatic
Iran J Med Sci, 1 Feb 2024 DOI: 10.21203/rs.3.rs-3902447/v1 Link to full text
Abstract: Epstein-Barr virus (EBV) is detected in 40% of patients with Hodgkin lymphoma (HL). During latency, EBV induces epigenetic alterations to the host genome and decreases the expression of pro-apoptotic proteins. The present study aimed to evaluate the expression levels of mRNA molecules and the end product of proteins for the JAK/STAT and NF-κB pathways, and their association with clinicopathological and prognostic parameters in patients with EBV-positive and -negative classical Hodgkin lymphoma (CHL).
93.

Using split protein reassembly strategy to optically control PLD enzymatic activity.

blue CRY2/CIB1 iLID HEK293T HeLa Signaling cascade control Organelle manipulation
bioRxiv, 30 Jan 2024 DOI: 10.1101/2024.01.27.577557 Link to full text
Abstract: Phospholipase D (PLD) and phosphatidic acid (PA) play a spatio-temporal role in regulating diverse cellular activities. Although current methodologies enable optical control of the subcellular localization of PLD and by which influence local PLD enzyme activity, the overexpression of PLD elevates the basal PLD enzyme activity and further leads to increased PA levels in cells. In this study, we employed a split protein reassembly strategy and optogenetic techniques to modify superPLD (a PLDPMF variant with a high basal activity). We splited this variants into two HKD domains and fused these domains with optogenetic elements and by which we achieved light-mediated dimerization of the two HKD proteins and then restored the PLD enzymatic activity.
94.

Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling

blue AsLOV2 CRY2/CIB1 iLID HEK293T Signaling cascade control
ACS Cent Sci, 30 Jan 2024 DOI: 10.1021/acscentsci.3c01105 Link to full text
Abstract: Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light–oxygen–voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
95.

Spatiotemporally controlled Pseudomonas exotoxin transgene system combined with multifunctional nanoparticles for breast cancer antimetastatic therapy.

blue VVD 4T1 HCT116 HUVEC mouse in vivo NCTC clone 929 Transgene expression
J Control Release, 25 Jan 2024 DOI: 10.1016/j.jconrel.2023.08.011 Link to full text
Abstract: The tumor microenvironment is a barrier to breast cancer therapy. Cancer-associated fibroblast cells (CAFs) can support tumor proliferation, metastasis, and drug resistance by secreting various cytokines and growth factors. Abnormal angiogenesis provides sufficient nutrients for tumor proliferation. Considering that CAFs express the sigma receptor (which recognizes anisamide, AA), we developed a CAFs and breast cancer cells dual-targeting nano drug delivery system to transport the LightOn gene express system, a spatiotemporal controlled gene expression consisting of a light-sensitive transcription factor and a specific minimal promoter. We adopted RGD (Arg-Gly-Asp) to selectively bind to the αvβ3 integrin on activated vascular endothelial cells and tumor cells. After the LightOn system has reached the tumor site, LightOn gene express system can spatiotemporal controllably express toxic Pseudomonas exotoxin An under blue light irradiation. The LightOn gene express system, combined with multifunctional nanoparticles, achieved high targeting delivery efficiency both in vitro and in vivo. It also displayed strong tumor and CAFs inhibition, anti-angiogenesis ability and anti-metastasis ability, with good safety. Moreover, it improved survival rate, survival time, and lung metastasis rate in a mouse breast cancer model. This study proves the efficacy of combining the LightOn system with targeted multifunctional nanoparticles in tumor and anti-metastatic therapy and provides new insights into tumor microenvironment regulation.
96.

Programmable RNA base editing with photoactivatable CRISPR-Cas13.

blue Magnets HEK293T HeLa HT-1080 MCF7 mouse in vivo Neuro-2a Nucleic acid editing
Nat Commun, 22 Jan 2024 DOI: 10.1038/s41467-024-44867-2 Link to full text
Abstract: CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.
97.

Rapid Optogenetic Clustering in the Cytoplasm with BcLOVclust.

blue BcLOV4 CRY2/CRY2 HEK293T Signaling cascade control
J Mol Biol, 20 Jan 2024 DOI: 10.1016/j.jmb.2024.168452 Link to full text
Abstract: Protein clustering is a powerful form of optogenetic control, yet remarkably few proteins are known to oligomerize with light. Recently, the photoreceptor BcLOV4 was found to form protein clusters in mammalian cells in response to blue light, although clustering coincided with its translocation to the plasma membrane, potentially constraining its application as an optogenetic clustering module. Herein we identify key amino acids that couple BcLOV4 clustering to membrane binding, allowing us to engineer a variant that clusters in the cytoplasm and does not associate with the membrane in response to blue light. This variant-called BcLOVclust-clustered over many cycles with substantially faster clustering and de-clustering kinetics compared to the widely used optogenetic clustering protein Cry2. The magnitude of clustering could be strengthened by appending an intrinsically disordered region from the fused in sarcoma (FUS) protein, or by selecting the appropriate fluorescent protein to which it was fused. Like wt BcLOV4, BcLOVclust activity was sensitive to temperature: light-induced clusters spontaneously dissolved at a rate that increased with temperature despite constant illumination. At low temperatures, BcLOVclust and Cry2 could be multiplexed in the same cells, allowing light control of independent protein condensates. BcLOVclust could also be applied to control signaling proteins and stress granules in mammalian cells. While its usage is currently best suited in cells and organisms that can be cultured below ∼30 °C, a deeper understanding of BcLOVclust thermal response will further enable its use at physiological mammalian temperatures.
98.

Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization.

blue AsLOV2 U-2 OS
Proc Natl Acad Sci U S A, 18 Jan 2024 DOI: 10.1073/pnas.2307997121 Link to full text
Abstract: Open Reading Frame 6 (ORF6) proteins, which are unique to severe acute respiratory syndrome-related (SARS) coronavirus, inhibit the classical nuclear import pathway to antagonize host antiviral responses. Several alternative models were proposed to explain the inhibitory function of ORF6 [H. Xia et al., Cell Rep. 33, 108234 (2020); L. Miorin et al., Proc. Natl. Acad. Sci. U.S.A. 117, 28344-28354 (2020); and M. Frieman et al., J. Virol. 81, 9812-9824 (2007)]. To distinguish these models and build quantitative understanding of ORF6 function, we developed a method for scoring both ORF6 concentration and functional effect in single living cells. We combined quantification of untagged ORF6 expression level in single cells with optogenetics-based measurement of nuclear transport kinetics, using methods that could be adapted to measure concentration-dependent effects of any untagged protein. We found that SARS-CoV-2 ORF6 is ~15 times more potent than SARS-CoV-1 ORF6 in inhibiting nuclear import and export, due to differences in the C-terminal region that is required for the NUP98-RAE1 binding. The N-terminal region was required for transport inhibition. This region binds membranes but could be replaced by synthetic constructs which forced oligomerization in solution, suggesting its primary function is oligomerization. We propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the NUP98-RAE1 complexes at the nuclear pore complex, and this multivalent binding inhibits bidirectional transport.
99.

Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.

blue iLID HEK293T NIH/3T3 Organelle manipulation
bioRxiv, 17 Jan 2024 DOI: 10.1101/2024.01.16.575860 Link to full text
Abstract: Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function—dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles, a major question in cell biology and drug development. Here we report an optogenetic approach to selectively dissolve a condensate of interest in a reversible and spatially controlled manner. We show that light-gated recruitment of maltose-binding protein (MBP), a commonly used solubilizing domain in protein purification, results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP, showing that disrupting condensation of the oncogenic fusion protein FUS-CHOP results in reversion of FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
100.

An RNA Motif That Enables Optozyme Control and Light-Dependent Gene Expression in Bacteria and Mammalian Cells.

blue PAL E. coli HEK293T Transgene expression
Adv Sci (Weinh), 16 Jan 2024 DOI: 10.1002/advs.202304519 Link to full text
Abstract: The regulation of gene expression by light enables the versatile, spatiotemporal manipulation of biological function in bacterial and mammalian cells. Optoribogenetics extends this principle by molecular RNA devices acting on the RNA level whose functions are controlled by the photoinduced interaction of a light-oxygen-voltage photoreceptor with cognate RNA aptamers. Here light-responsive ribozymes, denoted optozymes, which undergo light-dependent self-cleavage and thereby control gene expression are described. This approach transcends existing aptamer-ribozyme chimera strategies that predominantly rely on aptamers binding to small molecules. The optozyme method thus stands to enable the graded, non-invasive, and spatiotemporally resolved control of gene expression. Optozymes are found efficient in bacteria and mammalian cells and usher in hitherto inaccessible optoribogenetic modalities with broad applicability in synthetic and systems biology.
Submit a new publication to our database