Showing 76 - 100 of 128 results
76.
Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion.
Abstract:
Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
77.
Genetically-encoded biosensors for analyzing and controlling cellular process in yeast.
Abstract:
Yeast has been a robust platform to manufacture a broad range of biofuels, commodity chemicals, natural products and pharmaceuticals. The membrane-bound organelles in yeast provide us the means to access the specialized metabolism for various biosynthetic applications. The separation and compartmentalization of genetic and metabolic events presents us the opportunity to precisely control and program gene expression for higher order biological functions. To further advance yeast synthetic biology platform, genetically encoded biosensors and actuators haven been engineered for in vivo monitoring and controlling cellular processes with spatiotemporal resolutions. The dynamic response, sensitivity and operational range of these genetically encoded sensors are determined by the regulatory architecture, dynamic assemly and interactions of the related proteins and genetic elements. This review provides an update of the basic design principles underlying the allosteric transcription factors, GPCR and optogenetics-based sensors, aiming to precisely analyze and control yeast cellular processes for various biotechnological applications.
78.
Non-neuromodulatory Optogenetic Tools in Zebrafish.
Abstract:
The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
79.
m6A-binding YTHDF proteins promote stress granule formation.
Abstract:
Diverse RNAs and RNA-binding proteins form phase-separated, membraneless granules in cells under stress conditions. However, the role of the prevalent mRNA methylation, m6A, and its binding proteins in stress granule (SG) assembly remain unclear. Here, we show that m6A-modified mRNAs are enriched in SGs, and that m6A-binding YTHDF proteins are critical for SG formation. Depletion of YTHDF1/3 inhibits SG formation and recruitment of mRNAs to SGs. Both the N-terminal intrinsically disordered region and the C-terminal m6A-binding YTH domain of YTHDF proteins are important for SG formation. Super-resolution imaging further reveals that YTHDF proteins appear to be in a super-saturated state, forming clusters that often reside in the periphery of or at the junctions between SG core clusters, and potentially promote SG formation by reducing the activation energy barrier and critical size for SG condensate formation. Our results suggest a new function of the m6A-binding YTHDF proteins in regulating SG formation.
80.
Composition-dependent thermodynamics of intracellular phase separation.
Abstract:
Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.
81.
Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering.
-
Wei, M
-
Fan, X
-
Ding, M
-
Li, R
-
Shao, S
-
Hou, Y
-
Meng, S
-
Tang, F
-
Li, C
-
Sun, Y
Abstract:
Gene expression in response to external stimuli underlies a variety of fundamental cellular processes. However, how the transcription machinery is regulated under these scenarios is largely unknown. Here, we discover a novel role of nuclear actin in inducible transcriptional regulation using next-generation transcriptome sequencing and super-resolution microscopy. The RNA-seq data reveal that nuclear actin is required for the establishment of the serum-induced transcriptional program. Using super-resolution imaging, we found a remarkable enhancement of RNA polymerase II (Pol II) clustering upon serum stimulation and this enhancement requires the presence of nuclear actin. To study the molecular mechanisms, we firstly observed that Pol II clusters co-localized with the serum-response genes and nuclear actin polymerized in adjacent to Pol II clusters upon serum stimulation. Furthermore, N-WASP and Arp2/3 are reported to interact with Pol II, and we demonstrated N-WASP is required for serum-enhanced Pol II clustering. Importantly, using an optogenetic tool, we revealed that N-WASP phase-separated with the carboxy-terminal domain of Pol II and nuclear actin. In addition to serum stimulation, we found nuclear actin also essential in enhancing Pol II clustering upon interferon-γ treatment. Taken together, our work unveils nuclear actin promotes the formation of transcription factory on inducible genes, acting as a general mechanism underlying the rapid response to environmental cues.
82.
Optogenetic manipulation of calcium signals in single T cells in vivo.
Abstract:
By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation. Furthermore, we identify an actuator/reporter combination that permits the simultaneous manipulation and visualization of calcium signals in individual T cells in vivo. With this strategy, we document the consequences of defined patterns of calcium signals on T cell migration, adhesion, and chemokine release. Manipulation of individual immune cells in vivo should open new avenues for establishing the functional contribution of single immune cells engaged in complex reactions.
83.
Optogenetic modulation of TDP-43 oligomerization accelerates ALS-related pathologies in the spinal motor neurons.
Abstract:
Cytoplasmic aggregation of TDP-43 characterizes degenerating neurons in most cases of amyotrophic lateral sclerosis (ALS). Here, we develop an optogenetic TDP-43 variant (opTDP-43), whose multimerization status can be modulated in vivo through external light illumination. Using the translucent zebrafish neuromuscular system, we demonstrate that short-term light stimulation reversibly induces cytoplasmic opTDP-43 mislocalization, but not aggregation, in the spinal motor neuron, leading to an axon outgrowth defect associated with myofiber denervation. In contrast, opTDP-43 forms pathological aggregates in the cytoplasm after longer-term illumination and seeds non-optogenetic TDP-43 aggregation. Furthermore, we find that an ALS-linked mutation in the intrinsically disordered region (IDR) exacerbates the light-dependent opTDP-43 toxicity on locomotor behavior. Together, our results propose that IDR-mediated TDP-43 oligomerization triggers both acute and long-term pathologies of motor neurons, which may be relevant to the pathogenesis and progression of ALS.
84.
Optogenetic tools for dissecting complex intracellular signaling pathways.
Abstract:
Intracellular signaling forms complicated networks that involve dynamic alterations of the protein-protein interactions occurring inside a cell. To dissect these complex networks, light-inducible optogenetic technologies have offered a novel approach for modulating the function of intracellular machineries in space and time. Optogenetic approaches combine genetic and optical methods to initiate and control protein functions within live cells. In this review, we provide an overview of the optical strategies that can be used to manipulate intracellular signaling proteins and secondary messengers at the molecular level. We briefly address how an optogenetic actuator can be engineered to enhance homo- or hetero-interactions, survey various optical tools and targeting strategies for controlling cell-signaling pathways, examine their extension to in vivo systems and discuss the future prospects for the field.
85.
Non-invasive optical control of endogenous Ca2+ channels in awake mice.
-
Kim, S
-
Kyung, T
-
Chung, JH
-
Kim, N
-
Keum, S
-
Lee, J
-
Park, H
-
Kim, HM
-
Lee, S
-
Shin, HS
-
Do Heo, W
Abstract:
Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice.
86.
Optogenetic approaches to investigate spatiotemporal signaling during development.
Abstract:
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
87.
Optogenetic inhibition of Delta reveals digital Notch signaling output during tissue differentiation.
Abstract:
Spatio-temporal regulation of signalling pathways plays a key role in generating diverse responses during the development of multicellular organisms. The role of signal dynamics in transferring signalling information in vivo is incompletely understood. Here we employ genome engineering in Drosophila melanogaster to generate a functional optogenetic allele of the Notch ligand Delta (opto-Delta), which replaces both copies of the endogenous wild type locus. Using clonal analysis, we show that optogenetic activation blocks Notch activation through cis-inhibition in signal-receiving cells. Signal perturbation in combination with quantitative analysis of a live transcriptional reporter of Notch pathway activity reveals differential tissue- and cell-scale regulatory modes. While at the tissue-level the duration of Notch signalling determines the probability with which a cellular response will occur, in individual cells Notch activation acts through a switch-like mechanism. Thus, time confers regulatory properties to Notch signalling that exhibit integrative digital behaviours during tissue differentiation.
88.
Controlling the material properties and rRNA processing function of the nucleolus using light.
Abstract:
The nucleolus is a prominent nuclear condensate that plays a central role in ribosome biogenesis by facilitating the transcription and processing of nascent ribosomal RNA (rRNA). A number of studies have highlighted the active viscoelastic nature of the nucleolus, whose material properties and phase behavior are a consequence of underlying molecular interactions. However, the ways in which the material properties of the nucleolus impact its function in rRNA biogenesis are not understood. Here we utilize the Cry2olig optogenetic system to modulate the viscoelastic properties of the nucleolus. We show that above a threshold concentration of Cry2olig protein, the nucleolus can be gelled into a tightly linked, low mobility meshwork. Gelled nucleoli no longer coalesce and relax into spheres but nonetheless permit continued internal molecular mobility of small proteins. These changes in nucleolar material properties manifest in specific alterations in rRNA processing steps, including a buildup of larger rRNA precursors and a depletion of smaller rRNA precursors. We propose that the flux of processed rRNA may be actively tuned by the cell through modulating nucleolar material properties, which suggests the potential of materials-based approaches for therapeutic intervention in ribosomopathies.
89.
Light-induced dimerization approaches to control cellular processes.
Abstract:
Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.
90.
Phase separation of 53BP1 determines liquid-like behavior of DNA repair compartments.
Abstract:
The DNA damage response (DDR) generates transient repair compartments to concentrate repair proteins and activate signaling factors. The physicochemical properties of these spatially confined compartments and their function remain poorly understood. Here, we establish, based on live cell microscopy and CRISPR/Cas9-mediated endogenous protein tagging, that 53BP1-marked repair compartments are dynamic, show droplet-like behavior, and undergo frequent fusion and fission events. 53BP1 assembly, but not the upstream accumulation of γH2AX and MDC1, is highly sensitive to changes in osmotic pressure, temperature, salt concentration and to disruption of hydrophobic interactions. Phase separation of 53BP1 is substantiated by optoDroplet experiments, which further allowed dissection of the 53BP1 sequence elements that cooperate for light-induced clustering. Moreover, we found the tumor suppressor protein p53 to be enriched within 53BP1 optoDroplets, and conditions that disrupt 53BP1 phase separation impair 53BP1-dependent induction of p53 and diminish p53 target gene expression. We thus suggest that 53BP1 phase separation integrates localized DNA damage recognition and repair factor assembly with global p53-dependent gene activation and cell fate decisions.
91.
LADL: light-activated dynamic looping for endogenous gene expression control.
-
Kim, JH
-
Rege, M
-
Valeri, J
-
Dunagin, MC
-
Metzger, A
-
Titus, KR
-
Gilgenast, TG
-
Gong, W
-
Beagan, JA
-
Raj, A
-
Phillips-Cremins, JE
Abstract:
Mammalian genomes are folded into tens of thousands of long-range looping interactions. The cause-and-effect relationship between looping and genome function is poorly understood, and the extent to which loops are dynamic on short time scales remains an unanswered question. Here, we engineer a new class of synthetic architectural proteins for directed rearrangement of the three-dimensional genome using blue light. We target our light-activated-dynamic-looping (LADL) system to two genomic anchors with CRISPR guide RNAs and induce their spatial colocalization via light-induced heterodimerization of cryptochrome 2 and a dCas9-CIBN fusion protein. We apply LADL to redirect a stretch enhancer (SE) away from its endogenous Klf4 target gene and to the Zfp462 promoter. Using single-molecule RNA-FISH, we demonstrate that de novo formation of the Zfp462-SE loop correlates with a modest increase in Zfp462 expression. LADL facilitates colocalization of genomic loci without exogenous chemical cofactors and will enable future efforts to engineer reversible and oscillatory loops on short time scales.
92.
Regulation of signaling proteins in the brain by light.
Abstract:
In order to study the role of signaling proteins, such as kinases and GTPases, in brain functions it is necessary to control their activity at the appropriate spatiotemporal resolution and to examine the cellular and behavioral effects of such changes in activity. Reduced spatiotemporal resolution in the regulation of these proteins activity will impede the ability to understand the proteins normal functions as longer modification of their activity in non-normal locations could lead to effects different from their natural functions. To control intracellular signaling proteins at the highest temporal resolution recent innovative optogenetic approaches were developed to allow the control of photoactivable signaling proteins activity by light. These photoactivatable proteins can be activated in selected cell population in brain and in specific subcellular compartments. Minimal-invasive tools are being developed to photoactivate these proteins for study and therapy. Together these techniques afford an unprecedented spatiotemporal control of signaling proteins activity to unveil the function of brain proteins with high accuracy in behaving animals. As dysfunctional signaling proteins are involved in brain diseases, the optogenetic technique has also the potential to be used as a tool to treat brain diseases.
93.
Light-based control of metabolic flux through assembly of synthetic organelles.
Abstract:
To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.
94.
NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop.
Abstract:
Over the last decade, multiple studies have shown that signaling proteins activated in different temporal patterns, such as oscillatory, transient, and sustained, can result in distinct gene expression patterns or cell fates. However, the molecular events that ensure appropriate stimulus- and dose-dependent dynamics are not often understood and are difficult to investigate. Here, we used single-cell analysis to dissect the mechanisms underlying the stimulus- and dose-encoding patterns in the innate immune signaling network. We found that Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling dynamics relied on a dose-dependent, autoinhibitory loop that rendered cells refractory to further stimulation. Using inducible gene expression and optogenetics to perturb the network at different levels, we identified IL-1R-associated kinase 1 (IRAK1) as the dose-sensing node responsible for limiting signal flow during the innate immune response. Although the kinase activity of IRAK1 was not required for signal propagation, it played a critical role in inhibiting the nucleocytoplasmic oscillations of the transcription factor NF-κB. Thus, protein activities that may be "dispensable" from a topological perspective can nevertheless be essential in shaping the dynamic response to the external environment.
95.
RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.
-
Mann, JR
-
Gleixner, AM
-
Mauna, JC
-
Gomes, E
-
DeChellis-Marks, MR
-
Needham, PG
-
Copley, KE
-
Hurtle, B
-
Portz, B
-
Pyles, NJ
-
Guo, L
-
Calder, CB
-
Wills, ZP
-
Pandey, UB
-
Kofler, JK
-
Brodsky, JL
-
Thathiah, A
-
Shorter, J
-
Donnelly, CJ
Abstract:
TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.
96.
Photodimerization systems for regulating protein-protein interactions with light.
Abstract:
Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
97.
Light-Induced Protein Clustering for Optogenetic Interference and Protein Interaction Analysis in Drosophila S2 Cells.
Abstract:
Drosophila Schneider 2 (S2) cells are a simple and powerful system commonly used in cell biology because they are well suited for high resolution microscopy and RNAi-mediated depletion. However, understanding dynamic processes, such as cell division, also requires methodology to interfere with protein function with high spatiotemporal control. In this research study, we report the adaptation of an optogenetic tool to Drosophila S2 cells. Light-activated reversible inhibition by assembled trap (LARIAT) relies on the rapid light-dependent heterodimerization between cryptochrome 2 (CRY2) and cryptochrome-interacting bHLH 1 (CIB1) to form large protein clusters. An anti-green fluorescent protein (GFP) nanobody fused with CRY2 allows this method to quickly trap any GFP-tagged protein in these light-induced protein clusters. We evaluated clustering kinetics in response to light for different LARIAT modules, and showed the ability of GFP-LARIAT to inactivate the mitotic protein Mps1 and to disrupt the membrane localization of the polarity regulator Lethal Giant Larvae (Lgl). Moreover, we validated light-induced co-clustering assays to assess protein-protein interactions in S2 cells. In conclusion, GFP-based LARIAT is a versatile tool to answer different biological questions, since it enables probing of dynamic processes and protein-protein interactions with high spatiotemporal resolution in Drosophila S2 cells.
98.
A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.
Abstract:
Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
99.
Mechanobiology of Protein Droplets: Force Arises from Disorder.
Abstract:
The use of optogenetic approaches has revealed new roles for intracellular protein condensates
described in two papers in this issue of Cell (Bracha et. al., 2018; Shin et al., 2018). These results
show that growing condensates are able to exert mechanical forces resulting in chromatin
rearrangement, establishing a new role for liquid-liquid phase separation in the mechanobiology
of the cell.
100.
Light‐Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology.
Abstract:
The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology‐inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light‐controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non‐neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light‐sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light‐controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.