Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 427 results
76.

Using optogenetics to investigate the shared mechanisms of apical-basal polarity and mitosis.

blue red Cryptochromes LOV domains Phytochromes Review
Cells Tissues Organs, 4 Jan 2023 DOI: 10.1159/000528796 Link to full text
Abstract: The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as apical-basal polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and apical-basal polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
77.

Maternal stress and vulnerability to depression: coping and maternal care strategies and its consequences on adolescent offspring.

blue LOV domains Background
Transl Psychiatry, 4 Nov 2022 DOI: 10.1101/2021.02.20.432101 Link to full text
Abstract: Depressive mothers often find mother-child interaction to be challenging. Maternal stress may further impair mother-child attachment, which may increase the risk of negative developmental consequences. We used rats with different vulnerability to depressive-like behavior (Wistar and Kyoto) to investigate the impact of stress (maternal separation-MS) on maternal behavior and adolescent offspring cognition. MS in Kyoto dams increased pup-contact, resulting in higher oxytocin levels and lower anxiety-like behavior after weaning, while worsening their adolescent offspring cognitive behavior. Whereas MS in Wistar dams elicited higher quality of pup-directed behavior, increasing brain-derived neurotrophic factor (BDNF) in the offspring, which seems to have prevented a negative impact on cognition. Hypothalamic oxytocin seems to affect the salience of the social environment cues (negatively for Kyoto) leading to different coping strategies. Our findings highlight the importance of contextual and individual factors in the understanding of the oxytocin role in modulating maternal behavior and stress regulatory processes.
78.

Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.

blue green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Front Bioeng Biotechnol, 14 Oct 2022 DOI: 10.3389/fbioe.2022.1029403 Link to full text
Abstract: Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
79.

Two Rac1 pools integrate the direction and coordination of collective cell migration.

blue AsLOV2 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape
Nat Commun, 12 Oct 2022 DOI: 10.1038/s41467-022-33727-6 Link to full text
Abstract: Integration of collective cell direction and coordination is believed to ensure collective guidance for efficient movement. Previous studies demonstrated that chemokine receptors PVR and EGFR govern a gradient of Rac1 activity essential for collective guidance of Drosophila border cells, whose mechanistic insight is unknown. By monitoring and manipulating subcellular Rac1 activity, here we reveal two switchable Rac1 pools at border cell protrusions and supracellular cables, two important structures responsible for direction and coordination. Rac1 and Rho1 form a positive feedback loop that guides mechanical coupling at cables to achieve migration coordination. Rac1 cooperates with Cdc42 to control protrusion growth for migration direction, as well as to regulate the protrusion-cable exchange, linking direction and coordination. PVR and EGFR guide correct Rac1 activity distribution at protrusions and cables. Therefore, our studies emphasize the existence of a balance between two Rac1 pools, rather than a Rac1 activity gradient, as an integrator for the direction and coordination of collective cell migration.
80.

Analysis of Slow-Cycling Variants of the Light-Inducible Nuclear Protein Export System LEXY in Mammalian Cells.

blue AsLOV2 HEK293 Transgene expression
ACS Synth Biol, 30 Sep 2022 DOI: 10.1021/acssynbio.2c00232 Link to full text
Abstract: The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.
81.

Spatial and temporal control of expression with light-gated LOV-LexA.

blue AsLOV2 D. melanogaster in vivo Schneider 2 Transgene expression Neuronal activity control
G3 (Bethesda), 30 Sep 2022 DOI: 10.1093/g3journal/jkac178 Link to full text
Abstract: The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
82.

Proteomic mapping and optogenetic manipulation of membrane contact sites.

blue Cryptochromes LOV domains Review
Biochem J, 16 Sep 2022 DOI: 10.1042/bcj20220382 Link to full text
Abstract: Membrane contact sites (MCSs) mediate crucial physiological processes in eukaryotic cells, including ion signaling, lipid metabolism, and autophagy. Dysregulation of MCSs is closely related to various diseases, such as type 2 diabetes mellitus (T2DM), neurodegenerative diseases, and cancers. Visualization, proteomic mapping and manipulation of MCSs may help the dissection of the physiology and pathology MCSs. Recent technical advances have enabled better understanding of the dynamics and functions of MCSs. Here we present a summary of currently known functions of MCSs, with a focus on optical approaches to visualize and manipulate MCSs, as well as proteomic mapping within MCSs.
83.

The bright frontiers of microbial metabolic optogenetics.

blue green red Cryptochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 11 Sep 2022 DOI: 10.1016/j.cbpa.2022.102207 Link to full text
Abstract: In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
84.

Shedding light on current trends in molecular optogenetics.

blue green red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Chem Biol, 18 Aug 2022 DOI: 10.1016/j.cbpa.2022.102196 Link to full text
Abstract: Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
85.

Illuminating bacterial behaviors with optogenetics.

blue green red violet BLUF domains Cryptochromes LOV domains Phytochromes Review
Curr Opin Solid State Mater Sci, 9 Aug 2022 DOI: 10.1016/j.cossms.2022.101023 Link to full text
Abstract: Optogenetic approaches enable light-mediated control of cellular activities using genetically encoded photoreceptors. While optogenetic technology is already well established in neuroscience and fundamental research, the implementation of optogenetic tools in bacteriology is still emerging. Engineered bacteria with the specific optogenetic system that function at the transcriptional or post-translational level can sense and respond to light, allowing optogenetic control of bacterial behaviors. In this review, we give a brief overview of available optogenetic systems, including their mode of action, classification, and engineering strategies, and focus on optogenetic control of bacterial behaviors with the highlight of strategies for use of optogenetic systems.
86.

Optogenetic control of RelA reveals effect of transcription factor dynamics on downstream gene expression.

blue AsLOV2 LOVTRAP HEK293T MCF10A NIH/3T3 Endogenous gene expression
bioRxiv, 5 Aug 2022 DOI: 10.1101/2022.08.03.502739 Link to full text
Abstract: Many transcription factors (TFs) translocate to the nucleus with varied dynamic patterns in response to different inputs. A notable example of such behavior is RelA, a subunit of NF-κB, which translocates to the nucleus with either pulsed or sustained dynamics, depending on the stimulus. Our understanding of how these dynamics are interpreted by downstream genes has remained incomplete, partly because ubiquitously used environmental inputs activate other transcriptional regulators in addition to RelA. Here, we use an optogenetic tool, CLASP (controllable light-activated shuttling and plasma membrane sequestration), to control RelA spatiotemporal dynamics in mouse fibroblasts and quantify their effect on downstream genes using RNA-seq. Using RelA-CLASP, we show for the first time that nuclear translocation of RelA, without post-translational modifications or activation of other transcriptional regulators, is sufficient to activate downstream genes. Furthermore, we find that TNFα, a common endogenous input, regulates many genes independently of RelA, and that this gene regulation is different from that induced by RelA-CLASP. Genes responsive to RelA-CLASP show a wide range of dynamics in response to a constant RelA input. We use a simple promoter model to recapitulate these diverse dynamic responses, as well as data collected in response to a pulsed RelA-CLASP input, and extract features of many RelA-responsive promoters. We also pinpoint many genes for which more complex models, involving feedback or multi-step promoters, may be needed to explain their response to constant and pulsed TF inputs. This study introduces a new robust tool for studying mammalian transcriptional regulation and demonstrates the power of optogenetic tools in dissecting the quantitative features of important cellular pathways.
87.

A genetically encoded photo-proximity labeling approach for mapping protein territories.

blue AsLOV2 miniSOG A549 HEK293T HeLa U-2 OS
bioRxiv, 30 Jul 2022 DOI: 10.1101/2022.07.30.502153 Link to full text
Abstract: Studying dynamic biological processes requires approaches compatible with the lifetimes of the biochemical transactions under investigation, which can be very short. We describe a genetically encoded system that allows protein interactomes to be captured using visible light. Our approach involves fusing an engineered flavoprotein to a protein of interest. Brief excitation of the fusion protein leads to local generation of reactive radical species within cell-permeable probes. When combined with quantitative proteomics, the system generates ‘snapshots’ of protein interactions with high temporal resolution. The intrinsic fluorescence of the fusion domain permits correlated imaging and proteomics analyses, a capability that is exploited in several contexts, including defining the protein clients of the major vault protein (MVP). The technology should be broadly useful in the biomedical area.
88.

Optogenetic control of YAP cellular localisation and function.

blue AsLOV2 HEK293T HFF-1 MKN28 zebrafish in vivo Signaling cascade control
EMBO Rep, 25 Jul 2022 DOI: 10.15252/embr.202154401 Link to full text
Abstract: YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attach a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression and cell proliferation. Similarly, optofYap can be used in zebrafish embryos to modulate target genes. We demonstrate that optoYAP can override a cell's response to substrate stiffness to generate anchorage-independent growth. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.
89.

Optogenetics for light control of biological systems

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Nat Rev Methods Primers, 21 Jul 2022 DOI: 10.1038/s43586-022-00149-z Link to full text
Abstract: The H2 + H2 system has long been considered a benchmark system for ro-vibrational energy transfer in bimolecular collisions. However, most studies thus far have focused on collisions involving H2 molecules in the ground vibrational level or in the first excited vibrational state. While H2 + H2/HD collisions have received wide attention due to the important role they play in astrophysics, D2 + D2 collisions have received much less attention. Recently, Zhou et al. [ Nat. Chem. 2022, 14, 658-663, DOI: 10.1038/s41557-022-00926-z] examined stereodynamic aspects of rotational energy transfer in collisions of two aligned D2 molecules prepared in the v = 2 vibrational level and j = 2 rotational level. Here, we report quantum calculations of rotational and vibrational energy transfer in collisions of two D2 molecules prepared in vibrational levels up to v = 2 and identify key resonance features that contribute to the angular distribution in the experimental results of Zhou et al. The quantum scattering calculations were performed in full dimensionality and using the rigid-rotor approximation using a recently developed highly accurate six-dimensional potential energy surface for the H4 system that allows descriptions of collisions involving highly vibrationally excited H2 and its isotopologues.
90.

Emerging molecular technologies for light-mediated modulation of pancreatic beta-cell function.

blue red BLUF domains LOV domains Phytochromes Review
Mol Metab, 19 Jul 2022 DOI: 10.1016/j.molmet.2022.101552 Link to full text
Abstract: Optogenetic modalities as well as optochemical and photopharmacological strategies, collectively termed optical methods, have revolutionized the control of cellular functions via light with great spatiotemporal precision. In comparison to the major advances in the photomodulation of signaling activities noted in neuroscience, similar applications to endocrine cells of the pancreas, particularly insulin-producing β-cells, have been limited. The availability of tools allowing light-mediated changes in the trafficking of ions such as K+ and Ca2+ and signaling intermediates such as cyclic adenosine monophosphate (cAMP), renders β-cells and their glucose-stimulated insulin secretion (GSIS) amenable to optoengineering for drug-free control of blood sugar.
91.

Recent advances in cellular optogenetics for photomedicine.

blue cyan green near-infrared red UV violet PhyB/PIF6 BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Drug Deliv Rev, 16 Jul 2022 DOI: 10.1016/j.addr.2022.114457 Link to full text
Abstract: Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
92.

Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology.

blue near-infrared red UV violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Eng Biol, 7 Jul 2022 DOI: 10.1049/enb2.12022 Link to full text
Abstract: Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
93.

Plant optogenetics: Applications and perspectives.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Plant Biol, 30 Jun 2022 DOI: 10.1016/j.pbi.2022.102256 Link to full text
Abstract: To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
94.

Optogenetics for transcriptional programming and genetic engineering.

blue cyan near-infrared red UV violet Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Genet, 20 Jun 2022 DOI: 10.1016/j.tig.2022.05.014 Link to full text
Abstract: Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
95.

Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science.

blue cyan green red UV violet Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 14 Jun 2022 DOI: 10.3389/fbioe.2022.903982 Link to full text
Abstract: We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
96.

Optogenetic technologies in translational cancer research.

blue cyan green near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 9 Jun 2022 DOI: 10.1016/j.biotechadv.2022.108005 Link to full text
Abstract: Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
97.

Synthetic microbiology applications powered by light.

blue green red BLUF domains LOV domains Phytochromes Review
Curr Opin Microbiol, 31 May 2022 DOI: 10.1016/j.mib.2022.102158 Link to full text
Abstract: Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.
98.

Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine.

blue LOV domains Background
Nat Commun, 12 May 2022 DOI: 10.1038/s41467-022-30252-4 Link to full text
Abstract: In nature as in biotechnology, light-oxygen-voltage photoreceptors perceive blue light to elicit spatiotemporally defined cellular responses. Photon absorption drives thioadduct formation between a conserved cysteine and the flavin chromophore. An equally conserved, proximal glutamine processes the resultant flavin protonation into downstream hydrogen-bond rearrangements. Here, we report that this glutamine, long deemed essential, is generally dispensable. In its absence, several light-oxygen-voltage receptors invariably retained productive, if often attenuated, signaling responses. Structures of a light-oxygen-voltage paradigm at around 1 Å resolution revealed highly similar light-induced conformational changes, irrespective of whether the glutamine is present. Naturally occurring, glutamine-deficient light-oxygen-voltage receptors likely serve as bona fide photoreceptors, as we showcase for a diguanylate cyclase. We propose that without the glutamine, water molecules transiently approach the chromophore and thus propagate flavin protonation downstream. Signaling without glutamine appears intrinsic to light-oxygen-voltage receptors, which pertains to biotechnological applications and suggests evolutionary descendance from redox-active flavoproteins.
99.

Engineered Allosteric Regulation of Protein Function.

blue LOV domains Review
J Mol Biol, 2 May 2022 DOI: 10.1016/j.jmb.2022.167620 Link to full text
Abstract: Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.
100.

Engineering Light-Control in Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 28 Apr 2022 DOI: 10.3389/fbioe.2022.901300 Link to full text
Abstract: Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
Submit a new publication to our database