Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 79 of 79 results
76.

A synthetic photoactivated protein to generate local or global Ca(2+) signals.

blue AsLOV2 Cos-7 HEK293 HeLa NIH/3T3 Immediate control of second messengers
Chem Biol, 29 Jul 2011 DOI: 10.1016/j.chembiol.2011.04.014 Link to full text
Abstract: Ca(2+) signals regulate diverse physiological processes through tightly regulated fluxes varying in location, time, frequency, and amplitude. Here, we developed LOVS1K, a genetically encoded and photoactivated synthetic protein to generate local or global Ca(2+) signals. With 300 ms blue light exposure, LOVS1K translocated to Orai1, a plasma membrane Ca(2+) channel, within seconds, generating a local Ca(2+) signal on the plasma membrane, and returning to the cytoplasm after tens of seconds. With repeated photoactivation, global Ca(2+) signals in the cytoplasm were generated to modulate engineered Ca(2+)-inducible proteins. Although Orai1 is typically associated with global store-operated Ca(2+) entry, we demonstrate that Orai1 can also generate local Ca(2+) influx on the plasma membrane. Our photoactivation system can be used to generate spatially and temporally precise Ca(2+) signals and to engineer synthetic proteins that respond to specific Ca(2+) signals.
77.

Light activation as a method of regulating and studying gene expression.

blue LOV domains Review
Curr Opin Chem Biol, 24 Oct 2009 DOI: 10.1016/j.cbpa.2009.09.026 Link to full text
Abstract: Recently, several advances have been made in the activation and deactivation of gene expression using light. These developments are based on the application of small molecule inducers of gene expression, antisense- or RNA interference-mediated gene silencing, and the photochemical control of proteins regulating gene function. The majority of the examples employ a classical 'caging technology', through the chemical installation of a light-removable protecting group on the biological molecule (small molecule, oligonucleotide, or protein) of interest and rendering it inactive. UV light irradiation then removes the caging group and activates the molecule, enabling control over gene activity with high spatial and temporal resolution.
78.

Mechanism-based tuning of a LOV domain photoreceptor.

blue LOV domains Background
Nat Chem Biol, 30 Aug 2009 DOI: 10.1038/nchembio.210 Link to full text
Abstract: Phototropin-like LOV domains form a cysteinyl-flavin adduct in response to blue light but show considerable variation in output signal and the lifetime of the photo-adduct signaling state. Mechanistic studies of the slow-cycling fungal LOV photoreceptor Vivid (VVD) reveal the importance of reactive cysteine conformation, flavin electronic environment and solvent accessibility for adduct scission and thermal reversion. Proton inventory, pH effects, base catalysis and structural studies implicate flavin N(5) deprotonation as rate-determining for recovery. Substitutions of active site residues Ile74, Ile85, Met135 and Met165 alter photoadduct lifetimes by over four orders of magnitude in VVD, and similar changes in other LOV proteins show analogous effects. Adduct state decay rates also correlate with changes in conformational and oligomeric properties of the protein necessary for signaling. These findings link natural sequence variation of LOV domains to function and provide a means to design broadly reactive light-sensitive probes.
79.

Estimation of the available free energy in a LOV2-J alpha photoswitch.

blue LOV domains Background
Nat Chem Biol, 6 Jul 2008 DOI: 10.1038/nchembio.99 Link to full text
Abstract: Protein photosensors are versatile tools for studying ligand-regulated allostery and signaling. Fundamental to these processes is the amount of energy that can be provided by a photosensor to control downstream signaling events. Such regulation is exemplified by the phototropins--plant serine/threonine kinases that are activated by blue light via conserved LOV (light, oxygen and voltage) domains. The core photosensor of oat phototropin 1 is a LOV domain that interacts in a light-dependent fashion with an adjacent alpha-helix (J alpha) to control kinase activity. We used solution NMR measurements to quantify the free energy of the LOV domain-J alpha-helix binding equilibrium in the dark and lit states. These data indicate that light shifts this equilibrium by approximately 3.8 kcal mol(-1), thus quantifying the energy available through LOV-J alpha for light-driven allosteric regulation. This study provides insight into the energetics of light sensing by phototropins and benchmark values for engineering photoswitchable systems based on the LOV-J alpha interaction.
Submit a new publication to our database