Showing 76 - 100 of 137 results
76.
Amelioration of Diabetes in a Murine Model upon Transplantation of Pancreatic β-Cells with Optogenetic Control of Cyclic Adenosine Monophosphate.
Abstract:
Pharmacological augmentation of glucose-stimulated insulin secretion (GSIS), for example, to overcome insulin resistance in type 2 diabetes is linked to suboptimal regulation of blood sugar. Cultured β-cells and islets expressing a photoactivatable adenylyl cyclase (PAC) are amenable to GSIS potentiation with light. However, whether PAC-mediated enhancement of GSIS can improve the diabetic state remains unknown. To this end, β-cells were engineered with stable PAC expression that led to over 2-fold greater GSIS upon exposure to blue light while there were no changes in the absence of glucose. Moreover, the rate of oxygen consumption was unaltered despite the photoinduced elevation of GSIS. Transplantation of these cells into streptozotocin-treated mice resulted in improved glucose tolerance, lower hyperglycemia, and higher plasma insulin when subjected to illumination. Embedding optogenetic networks in β-cells for physiologically relevant control of GSIS will enable novel solutions potentially overcoming the shortcomings of current treatments for diabetes.
77.
Synthetic Biology Tools for the Fast-Growing Marine Bacterium Vibrio natriegens.
-
Tschirhart, T
-
Shukla, V
-
Kelly, EE
-
Schultzhaus, Z
-
NewRingeisen, E
-
Erickson, JS
-
Wang, Z
-
Garcia, W
-
Curl, E
-
Egbert, RG
-
Yeung, E
-
Vora, GJ
Abstract:
The fast-growing non-model marine bacterium Vibrio natriegens has recently garnered attention as a host for molecular biology and biotechnology applications. In order further its capabilities as a synthetic biology chassis, we have characterized a wide range of genetic parts and tools for use in V. natriegens. These parts include many commonly-used resistance markers, promoters, ribosomal binding sites, reporters, terminators, degradation tags, origin of replication sequences and plasmid backbones. We have characterized the behavior of these parts in different combinations and have compared their functionality in V. natriegens and Escherichia coli. Plasmid stability over time, plasmid copy numbers, and production load on the cells were also evaluated. Additionally, we tested constructs for chemical and optogenetic induction and characterized basic engineered circuit behavior in V. natriegens. The results indicate that while most parts and constructs work similarly in the two organisms, some deviate significantly. Overall, these results will serve as a primer for anyone interested in engineering V. natriegens and will aid in developing more robust synthetic biology principles and approaches for this non-model chassis.
78.
OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.
Abstract:
Subcellular localization of signal molecules is a hallmark in organizing the signaling network. OpEn-Tag is a modular optogenetic endomembrane targeting toolbox that allows alteration of the localization and therefore the activity of signaling processes with the spatiotemporal resolution of optogenetics. OpEn-Tag is a two-component system employing (1) a variety of targeting peptides fused to and thereby dictating the localization of mCherry-labeled cryptochrome 2 binding protein CIBN toward distinct endomembranes and (2) the cytosolic, fluorescence-labeled blue light photoreceptor cryptochrome 2 as a customizable building block that can be fused to proteins of interest. The combination of OpEn-Tag with growth factor stimulation or the use of two membrane anchor sequences allows investigation of multilayered signal transduction processes as demonstrated here for the protein kinase AKT.
79.
Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.
Abstract:
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
80.
Optogenetic downregulation of protein levels with an ultrasensitive switch.
Abstract:
Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, e.g. for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes as well as fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.
81.
A yeast system for discovering optogenetic inhibitors of eukaryotic translation initiation.
Abstract:
The precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis non-invasively within minutes and with a spatial scale as small as a single synapse. Here, we present a hybrid yeast system where growth depends on the activity of human eukaryotic initiation factor 4E (eIF4E) that is suitable for screening optogenetic designs for the down-regulation of protein synthesis. We used this system to screen a diverse initial panel of 15 constructs designed to couple a light switchable domain (PYP, RsLOV, LOV, Dronpa) to 4EBP2 (eukaryotic initiation factor 4E binding protein 2), a native inhibitor of translation initiation. We identified cLIPS1 (circularly permuted LOV inhibitor of protein synthesis 1), a fusion of a segment of 4EBP2 and a circularly permuted version of the LOV2 domain from Avena sativa, as a photo-activated inhibitor of translation. Adapting the screen for higher throughput, we tested small libraries of cLIPS1 variants and found cLIPS2, a construct with an improved degree of optical control. We show that these constructs can both inhibit translation in yeast harboring a human eIF4E in vivo, and bind human eIF4E in vitro in a light-dependent manner. This hybrid yeast system thus provides a convenient way for discovering optogenetic constructs that can regulate of human eIF4E-depednednt translation initiation in a mechanistically defined manner.
82.
Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration.
Abstract:
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
83.
Synthetic Control of Protein Degradation during Cell Proliferation and Developmental Processes.
Abstract:
Synthetic tools for the control of protein function are valuable for biomedical research to characterize cellular functions of essential proteins or if a rapid switch in protein activity is necessary. The ability to tune protein activity precisely opens another level of investigations that is not available with gene deletion mutants. Control of protein stability is a versatile approach to influence the activity of a target protein by its cellular abundance. Diverse strategies have been developed to achieve efficient proteolysis using external inducers or differentiation-coupled signals. The latter is especially important for the inactivation of a protein during a developmental process. Recently, several approaches to achieve this have been engineered. In this article, we present current synthetic tools for regulation of protein stability that allow fine-tuning of protein abundance, their advantages and disadvantages with an emphasis on methods applicable in the context of cell differentiation and development. We give an outlook toward future developments and discuss main applications of these tools.
84.
Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.
Abstract:
Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
85.
Programming the Dynamic Control of Bacterial Gene Expression with a Chimeric Ligand- and Light-Based Promoter System.
Abstract:
To program cells in a dynamic manner, synthetic biologists require precise control over the threshold levels and timing of gene expression. However, in practice, modulating gene expression is widely carried out using prototypical ligand-inducible promoters, which have limited tunability and spatiotemporal resolution. Here, we built two dual-input hybrid promoters, each retaining the function of the ligand-inducible promoter while being enhanced with a blue-light-switchable tuning knob. Using the new promoters, we show that both ligand and light inputs can be synchronously modulated to achieve desired amplitude or independently regulated to generate desired frequency at a specific amplitude. We exploit the versatile programmability and orthogonality of the two promoters to build the first reprogrammable logic gene circuit capable of reconfiguring into logic OR and N-IMPLY logic on the fly in both space and time without the need to modify the circuit. Overall, we demonstrate concentration- and time-based combinatorial regulation in live bacterial cells with potential applications in biotechnology and synthetic biology.
86.
Discovering selective binders for photoswitchable proteins using phage display.
Abstract:
Nature provides an array of proteins that change conformation in response to light. The discovery of a complementary array of proteins that bind only the light-state or dark-state conformation of their photoactive partner proteins would allow each light-switchable protein to be used as an optogenetic tool to control protein-protein interactions. However, as many photoactive proteins have no known binding partner, the advantages of optogenetic control - precise spatial and temporal resolution - are currently restricted to a few well-defined natural systems. In addition, the affinities and kinetics of native interactions are often sub-optimal and are difficult to engineer in the absence of any structural information. We report a phage display strategy using a small scaffold protein that can be used to discover new binding partners for both light and dark states of a given light-switchable protein. We used our approach to generate binding partners that interact specifically with the light state or the dark state conformation of two light-switchable proteins: PYP, a test case for a protein with no known partners, and AsLOV2 a well-characterized protein. We show that these novel light-switchable protein-protein interactions can function in living cells to control subcellular localization processes.
87.
A Single-Component Optogenetic System Allows Stringent Switch of Gene Expression in Yeast Cells.
Abstract:
Light is a highly attractive actuator that allows spatiotemporal control of diverse cellular activities. In this study, we developed a single-component light-switchable gene expression system for yeast cells, termed yLightOn system. The yLightOn system is independent of exogenous cofactors, and exhibits more than a 500-fold ON/OFF ratio, extremely low leakage, fast expression kinetics, and high spatial resolution. We demonstrated the usefulness of the yLightOn system in regulating cell growth and cell cycle by stringently controlling the expression of His3 and ΔN Sic1 genes, respectively. Furthermore, we engineered a bidirectional expression module that allows the simultaneous control of the expression of two genes by light. With ClpX and ClpP as the reporters, the fast, quantitative, and spatially specific degradation of ssrA-tagged protein was observed. We suggest that this single-component optogenetic system will be immensely helpful in understanding cellular gene regulatory networks and in the design of robust genetic circuits for synthetic biology.
88.
Optical activation of TrkA signaling.
Abstract:
Nerve growth factor/tropomyosin receptor kinase A (NGF/TrkA) signaling plays a key role in neuronal development, function, survival, and growth. The pathway is implicated in neurodegenerative disorders including Alzheimer's disease, chronic pain, inflammation, and cancer. NGF binds the extracellular domain of TrkA, leading to the activation of the receptor's intracellular kinase domain. TrkA signaling is highly dynamic, thus mechanistic studies would benefit from a tool with high spatial and temporal resolution. Here we present the design and evaluation of four strategies for light-inducible activation of TrkA in the absence of NGF. Our strategies involve the light-sensitive protein Arabidopsis cryptochrome 2 (CRY2) and its binding partner CIB1. We demonstrate successful recapitulation of native NGF/TrkA functions by optical induction of plasma membrane recruitment and homo-interaction of the intracellular domain of TrkA. This approach activates PI3K/AKT and Raf/ERK signaling pathways, promotes neurite growth in PC12 cells, and supports the survival of dorsal root ganglion neurons in the absence of NGF. This ability to activate TrkA using light bestows high spatial and temporal resolution for investigating NGF/TrkA signaling.
89.
Reversible Social Self-Sorting of Colloidal Cell-Mimics with Blue Light Switchable Proteins.
Abstract:
Towards the bottom-up assembly of synthetic cells from molecular building blocks it is an ongoing challenge to assemble micrometer sized compartments that host different processes into precise multicompartmental assemblies, also called prototissues. The difficulty lies in controlling interactions between different compartments dynamically both in space and time, as these interactions determine how they organize with respect to each other and how they work together. In this study, we have been able to control the self-assembly and social self-sorting of four different types of colloids, which we use as a model for synthetic cells, into two separate families with visible light. For this purpose we used two photoswitchable protein pairs (iLID/Nano and nHagHigh/pMagHigh) that both reversibly heterodimerize upon blue light exposure and dissociate from each other in the dark. These photoswitchable proteins provide non-invasive, dynamic and reversible remote control under biocompatible conditions over the self-assembly process with unprecedented spatial and temporal precision. In addition, each protein pair brings together specifically two different types of colloids. The orthogonality of the two protein pairs enables social self-sorting of a four component mixture into two distinct families of colloidal aggregates with controlled arrangements. These results will ultimately pave the way for the bottom-up assembly of multicompartment synthetic prototissues of a higher complexity, enabling us to control precisely and dynamically the organization of different compartments in space and time.
90.
OptoBase: A web platform for molecular optogenetics.
Abstract:
OptoBase is an online platform for molecular optogenetics. At its core is a hand-annotated and ontology-supported database that aims to cover all existing optogenetic switches and publications, which is further complemented with a collection of convenient optogenetics-related web tools. OptoBase is meant for both expert optogeneticists, to easily keep track of the field, as well as for all researchers who find optogenetics inviting as a powerful tool to address their biological questions of interest. It is available at https://www.optobase.org. This work also presents OptoBase-based analysis of the trends in molecular optogenetics.
91.
LOV Domains in the Design of Photoresponsive Enzymes.
Abstract:
In nature, a multitude of mechanisms have emerged for regulating biological processes and, specifically, protein activity. Light as a natural regulatory element is of outstanding interest for studying and modulating protein activity because it can be precisely applied with regard to a site of action, instant of time, or intensity. Naturally occuring photoresponsive proteins, predominantly those containing a light-oxygen-voltage (LOV) domain, have been characterized structurally and mechanistically and also conjugated to various proteins of interest. Immediate advantages of these new photoresponsive proteins such as genetic encoding, no requirement of chemical modification, and reversibility are paid by difficulties in predicting the envisaged activity or type and site of domain fusion. In this article, we summarize recent advances and give a survey on currently available design concepts for engineering photoswitchable proteins.
92.
Optogenetic inhibition of Gαq protein signaling reduces calcium oscillation stochasticity.
Abstract:
As fast terminators of G-protein coupled receptor (GPCR) signaling, regulators of G-protein signaling (RGS) serve critical roles in fine-tuning second messenger levels and, consequently, cellular responses to external stimuli. Here, we report the creation of an optogenetic RGS2 (opto-RGS2) that suppresses agonist-evoked calcium oscillations by the inactivation of Gαq protein. In this system, cryptochrome-mediated hetero-dimerization of the catalytic RGS2-box with its N-terminal amphipathic helix reconstitutes a functional membrane-localized complex that can dynamically suppress store-operated release of calcium. Engineered opto-RGS2 cell lines were used to establish the role of RGS2 as a key inhibitory feedback regulator of the stochasticity of the Gαq-mediated calcium spike timing. RGS2 reduced the stochasticity of carbachol-stimulated calcium oscillations, and the feedback inhibition was coupled to the global calcium elevation by calmodulin/RGS2 interactions. The identification of a critical negative feedback circuit exemplifies the utility of optogenetic approaches for interrogating RGS/GPCR biology and calcium encoding principles through temporally precise molecular gain-of-function.
93.
Bioprinting Living Biofilms through Optogenetic Manipulation.
Abstract:
In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.
94.
A green light-responsive system for the control of transgene expression in mammalian and plant cells.
Abstract:
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH6 and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene expression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
95.
Cell-free optogenetic gene expression system.
Abstract:
Optogenetic tools provide a new and efficient way to dynamically program gene expression with unmatched spatiotemporal precision. To date, its vast potential remains untapped in the field of cell-free synthetic biology, largely due to the lack of simple and efficient light-switchable systems. Here, to bridge the gap between cell-free systems and optogenetics, we studied our previously engineered one component-based blue light-inducible Escherichia coli promoter in a cell-free environment through experimental characterization and mathematical modelling. We achieved >10-fold dynamic expression and demonstrated rapid and reversible activation of target gene to generate oscillatory waveform. Deterministic model developed was able to recapitulate the system behaviour and helped to provide quantitative insights to optimize dynamic response. This in vitro optogenetic approach could be a powerful new high-throughput screening technology for rapid prototyping of complex biological networks in both space and time without the need for chemical induction.
96.
Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.
Abstract:
Tools capable of modulating gene expression in living organisms are very useful for interrogating the gene regulatory network and controlling biological processes. The catalytically inactive CRISPR/Cas9 (dCas9), when fused with repressive or activating effectors, functions as a versatile platform to reprogram gene transcription at targeted genomic loci. However, without temporal control, the application of these reprogramming tools will likely cause off-target effects and lack strict reversibility. To overcome this limitation, we report herein the development of a chemical or light-inducible transcriptional reprogramming device that combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. By fusing an engineered Ca2+-responsive NFAT fragment with dCas9 and transcriptional coactivators, we harness the power of light to achieve photoinducible transcriptional reprogramming in mammalian cells. This synthetic system (designated CaRROT) can also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.
97.
Generation of Optogenetically Modified Adenovirus Vector for Spatiotemporally Controllable Gene Therapy.
Abstract:
Gene therapy is expected to be utilized for the treatment of various diseases. However, the spatiotemporal resolution of current gene therapy technology is not high enough. In this study, we generated a new technology for spatiotemporally controllable gene therapy. We introduced optogenetic and CRISPR/Cas9 techniques into a recombinant adenovirus (Ad) vector, which is widely used in clinical trials and exhibits high gene transfer efficiency, to generate an illumination-dependent spatiotemporally controllable gene regulation system (designated the Opt/Cas-Ad system). We generated an Opt/Cas-Ad system that could regulate a potential tumor suppressor gene, and we examined the effectiveness of this system in cancer treatment using a xenograft tumor model. With the Opt/Cas-Ad system, highly selective tumor treatment could be performed by illuminating the tumor. In addition, Opt/Cas-Ad system-mediated tumor treatment could be stopped simply by turning off the light. We believe that our Opt/Cas-Ad system can enhance both the safety and effectiveness of gene therapy.
98.
Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics.
-
Kyriakakis, P
-
Catanho, M
-
Hoffner, N
-
Thavarajah, W
-
Jian-Yu, V
-
Chao, SS
-
Hsu, A
-
Pham, V
-
Naghavian, L
-
Dozier, LE
-
Patrick, G
-
Coleman, T
Abstract:
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics, is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and for the first time, combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
99.
Spatiotemporal Control of TGF-β Signaling with Light.
Abstract:
Cells employ signaling pathways to make decisions in response to changes in their immediate environment. Transforming growth factor beta (TGF-β) is an important growth factor that regulates many cellular functions in development and disease. Although the molecular mechanisms of TGF-β signaling have been well studied, our understanding of this pathway is limited by the lack of tools that allow the control of TGF-β signaling with high spatiotemporal resolution. Here, we developed an optogenetic system (optoTGFBRs) that enables the precise control of TGF-β signaling in time and space. Using the optoTGFBRs system, we show that TGF-β signaling can be selectively and sequentially activated in single cells through the modulation of the pattern of light stimulations. By simultaneously monitoring the subcellular localization of TGF-β receptor and Smad2 proteins, we characterized the dynamics of TGF-β signaling in response to different patterns of blue light stimulations. The spatial and temporal precision of light control will make the optoTGFBRs system as a powerful tool for quantitative analyses of TGF-β signaling at the single cell level.
100.
Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering.
Abstract:
The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.