Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 250 results
76.

Optogenetic control of RelA reveals effect of transcription factor dynamics on downstream gene expression.

blue AsLOV2 LOVTRAP HEK293T MCF10A NIH/3T3 Endogenous gene expression
bioRxiv, 5 Aug 2022 DOI: 10.1101/2022.08.03.502739 Link to full text
Abstract: Many transcription factors (TFs) translocate to the nucleus with varied dynamic patterns in response to different inputs. A notable example of such behavior is RelA, a subunit of NF-κB, which translocates to the nucleus with either pulsed or sustained dynamics, depending on the stimulus. Our understanding of how these dynamics are interpreted by downstream genes has remained incomplete, partly because ubiquitously used environmental inputs activate other transcriptional regulators in addition to RelA. Here, we use an optogenetic tool, CLASP (controllable light-activated shuttling and plasma membrane sequestration), to control RelA spatiotemporal dynamics in mouse fibroblasts and quantify their effect on downstream genes using RNA-seq. Using RelA-CLASP, we show for the first time that nuclear translocation of RelA, without post-translational modifications or activation of other transcriptional regulators, is sufficient to activate downstream genes. Furthermore, we find that TNFα, a common endogenous input, regulates many genes independently of RelA, and that this gene regulation is different from that induced by RelA-CLASP. Genes responsive to RelA-CLASP show a wide range of dynamics in response to a constant RelA input. We use a simple promoter model to recapitulate these diverse dynamic responses, as well as data collected in response to a pulsed RelA-CLASP input, and extract features of many RelA-responsive promoters. We also pinpoint many genes for which more complex models, involving feedback or multi-step promoters, may be needed to explain their response to constant and pulsed TF inputs. This study introduces a new robust tool for studying mammalian transcriptional regulation and demonstrates the power of optogenetic tools in dissecting the quantitative features of important cellular pathways.
77.

Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase.

blue Magnets VVD HEK293T Transgene expression
ACS Synth Biol, 3 Aug 2022 DOI: 10.1021/acssynbio.2c00067 Link to full text
Abstract: Optogenetic tools are widely used to control gene expression dynamics both in prokaryotic and eukaryotic cells. These tools are used in a variety of biological applications from stem cell differentiation to metabolic engineering. Despite some tools already available in bacteria, no light-inducible system currently exists to control gene expression independently from mammalian transcriptional and/or translational machineries thus working orthogonally to endogenous regulatory mechanisms. Such a tool would be particularly important in synthetic biology, where orthogonality is advantageous to achieve robust activation of synthetic networks. Here we implement, characterize, and optimize a new optogenetic tool in mammalian cells based on a previously published system in bacteria called Opto-T7RNAPs. The tool is orthogonal to the cellular machinery for transcription and consists of a split T7 RNA polymerase coupled with the blue light-inducible magnets system (mammalian OptoT7-mOptoT7). In our study we exploited the T7 polymerase's viral origins to tune our system's expression level, reaching up to an almost 20-fold change activation over the dark control. mOptoT7 is used here to generate mRNA for protein expression, shRNA for protein inhibition, and Pepper aptamer for RNA visualization. Moreover, we show that mOptoT7 can mitigate the gene expression burden when compared to another optogenetic construct. These properties make mOptoT7 a powerful new tool to use when orthogonality and viral RNA species (that lack endogenous RNA modifications) are desired.
78.

A genetically encoded photo-proximity labeling approach for mapping protein territories.

blue AsLOV2 miniSOG A549 HEK293T HeLa U-2 OS
bioRxiv, 30 Jul 2022 DOI: 10.1101/2022.07.30.502153 Link to full text
Abstract: Studying dynamic biological processes requires approaches compatible with the lifetimes of the biochemical transactions under investigation, which can be very short. We describe a genetically encoded system that allows protein interactomes to be captured using visible light. Our approach involves fusing an engineered flavoprotein to a protein of interest. Brief excitation of the fusion protein leads to local generation of reactive radical species within cell-permeable probes. When combined with quantitative proteomics, the system generates ‘snapshots’ of protein interactions with high temporal resolution. The intrinsic fluorescence of the fusion domain permits correlated imaging and proteomics analyses, a capability that is exploited in several contexts, including defining the protein clients of the major vault protein (MVP). The technology should be broadly useful in the biomedical area.
79.

Optogenetic control of YAP cellular localisation and function.

blue AsLOV2 HEK293T HFF-1 MKN28 zebrafish in vivo Signaling cascade control
EMBO Rep, 25 Jul 2022 DOI: 10.15252/embr.202154401 Link to full text
Abstract: YAP, an effector of the Hippo signalling pathway, promotes organ growth and regeneration. Prolonged YAP activation results in uncontrolled proliferation and cancer. Therefore, exogenous regulation of YAP activity has potential translational applications. We present a versatile optogenetic construct (optoYAP) for manipulating YAP localisation, and consequently its activity and function. We attach a LOV2 domain that photocages a nuclear localisation signal (NLS) to the N-terminus of YAP. In 488 nm light, the LOV2 domain unfolds, exposing the NLS, which shuttles optoYAP into the nucleus. Nuclear import of optoYAP is reversible and tuneable by light intensity. In cell culture, activated optoYAP promotes YAP target gene expression and cell proliferation. Similarly, optofYap can be used in zebrafish embryos to modulate target genes. We demonstrate that optoYAP can override a cell's response to substrate stiffness to generate anchorage-independent growth. OptoYAP is functional in both cell culture and in vivo, providing a powerful tool to address basic research questions and therapeutic applications in regeneration and disease.
80.

A nucleation barrier spring-loads the CBM signalosome for binary activation.

blue CRY2clust VfAU1-LOV HEK293T Signaling cascade control
Elife, 21 Jun 2022 DOI: 10.7554/elife.79826 Link to full text
Abstract: Immune cells activate in binary, switch-like fashion via large protein assemblies known as signalosomes, but the molecular mechanism of the switch is not yet understood. Here, we employed an in-cell biophysical approach to dissect the assembly mechanism of the CARD-BCL10-MALT1 (CBM) signalosome, which governs nuclear transcription factor-κB activation in both innate and adaptive immunity. We found that the switch consists of a sequence-encoded and deeply conserved nucleation barrier to ordered polymerization by the adaptor protein BCL10. The particular structure of the BCL10 polymers did not matter for activity. Using optogenetic tools and single-cell transcriptional reporters, we discovered that endogenous BCL10 is functionally supersaturated even in unstimulated human cells, and this results in a predetermined response to stimulation upon nucleation by activated CARD multimers. Our findings may inform on the progressive nature of age-associated inflammation, and suggest that signalosome structure has evolved via selection for kinetic rather than equilibrium properties of the proteins.
81.

A red light-responsive photoswitch for deep tissue optogenetics.

near-infrared red BphP1/Q-PAS1 DrBphP MagRed HEK293T HeLa in vitro Neuro-2a Transgene expression
Nat Biotechnol, 13 Jun 2022 DOI: 10.1038/s41587-022-01351-w Link to full text
Abstract: Red light penetrates deep into mammalian tissues and has low phototoxicity, but few optogenetic tools that use red light have been developed. Here we present MagRed, a red light-activatable photoswitch that consists of a red light-absorbing bacterial phytochrome incorporating a mammalian endogenous chromophore, biliverdin and a photo-state-specific binder that we developed using Affibody library selection. Red light illumination triggers the binding of the two components of MagRed and the assembly of split-proteins fused to them. Using MagRed, we developed a red light-activatable Cre recombinase, which enables light-activatable DNA recombination deep in mammalian tissues. We also created red light-inducible transcriptional regulators based on CRISPR-Cas9 that enable an up to 378-fold activation (average, 135-fold induction) of multiple endogenous target genes. MagRed will facilitate optogenetic applications deep in mammalian organisms in a variety of biological research areas.
82.

Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B.

blue red CRY2/CRY2 PhyB/PIF3 HEK293T Organelle manipulation
Mol Cell, 12 Jun 2022 DOI: 10.1016/j.molcel.2022.05.026 Link to full text
Abstract: Light and temperature in plants are perceived by a common receptor, phytochrome B (phyB). How phyB distinguishes these signals remains elusive. Here, we report that phyB spontaneously undergoes phase separation to assemble liquid-like droplets. This capacity is driven by its C terminus through self-association, whereas the intrinsically disordered N-terminal extension (NTE) functions as a biophysical modulator of phase separation. Light exposure triggers a conformational change to subsequently alter phyB condensate assembly, while temperature sensation is directly mediated by the NTE to modulate the phase behavior of phyB droplets. Multiple signaling components are selectively incorporated into phyB droplets to form concentrated microreactors, allowing switch-like control of phyB signaling activity through phase transitions. Therefore, light and temperature cues are separately read out by phyB via allosteric changes and spontaneous phase separation, respectively. We provide a conceptual framework showing how the distinct but highly correlated physical signals are interpreted and sorted by one receptor.
83.

Optogenetic control of NOTCH1 signaling.

blue LOVTRAP HEK293T MCF7 MDA-MB-468 Signaling cascade control
Cell Commun Signal, 18 May 2022 DOI: 10.1186/s12964-022-00885-5 Link to full text
Abstract: The Notch signaling pathway is a crucial regulator of cell differentiation as well as tissue organization, whose deregulation is linked to the pathogenesis of different diseases. NOTCH1 plays a key role in breast cancer progression by increasing proliferation, maintenance of cancer stem cells, and impairment of cell death. NOTCH1 is a mechanosensitive receptor, where mechanical force is required to activate the proteolytic cleavage and release of the Notch intracellular domain (NICD). We circumvent this limitation by regulating Notch activity by light. To achieve this, we have engineered an optogenetic NOTCH1 receptor (optoNotch) to control the activation of NOTCH1 intracellular domain (N1ICD) and its downstream transcriptional activities. Using optoNotch we confirm that NOTCH1 activation increases cell proliferation in MCF7 and MDA-MB-468 breast cancer cells in 2D and spheroid 3D cultures, although causing distinct cell-type specific migratory phenotypes. Additionally, optoNotch activation induced chemoresistance on the same cell lines. OptoNotch allows the fine-tuning, ligand-independent, regulation of N1ICD activity and thus a better understanding of the spatiotemporal complexity of Notch signaling. Video Abstract.
84.

Engineered Cas9 extracellular vesicles as a novel gene editing tool.

blue red CRY2/CIB1 Magnets PhyB/PIF6 VVD HEK293T Nucleic acid editing
J Extracell Vesicles, May 2022 DOI: 10.1002/jev2.12225 Link to full text
Abstract: Extracellular vesicles (EVs) have shown promise as biological delivery vehicles, but therapeutic applications require efficient cargo loading. Here, we developed new methods for CRISPR/Cas9 loading into EVs through reversible heterodimerization of Cas9-fusions with EV sorting partners. Cas9-loaded EVs were collected from engineered Expi293F cells using standard methodology, characterized using nanoparticle tracking analysis, western blotting, and transmission electron microscopy and analysed for CRISPR/Cas9-mediated functional gene editing in a Cre-reporter cellular assay. Light-induced dimerization using Cryptochrome 2 combined with CD9 or a Myristoylation-Palmitoylation-Palmitoylation lipid modification resulted in efficient loading with approximately 25 Cas9 molecules per EV and high functional delivery with 51% gene editing of the Cre reporter cassette in HEK293 and 25% in HepG2 cells, respectively. This approach was also effective for targeting knock-down of the therapeutically relevant PCSK9 gene with 6% indel efficiency in HEK293. Cas9 transfer was detergent-sensitive and associated with the EV fractions after size exclusion chromatography, indicative of EV-mediated transfer. Considering the advantages of EVs over other delivery vectors we envision that this study will prove useful for a range of therapeutic applications, including CRISPR/Cas9 mediated genome editing.
85.

PPARγ phase separates with RXRα at PPREs to regulate target gene expression.

blue CRY2olig HEK293T NIH/3T3 Organelle manipulation
Cell Discov, 26 Apr 2022 DOI: 10.1038/s41421-022-00388-0 Link to full text
Abstract: Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.
86.

Optogenetic activators of apoptosis, necroptosis, and pyroptosis.

blue CRY2olig Caco-2 HaCaT HEK293T HeLa HT-29 MCF7 RAW264.7 U-937 zebrafish in vivo Cell death
J Cell Biol, 14 Apr 2022 DOI: 10.1083/jcb.202109038 Link to full text
Abstract: Targeted and specific induction of cell death in an individual or groups of cells hold the potential for new insights into the response of tissues or organisms to different forms of death. Here, we report the development of optogenetically controlled cell death effectors (optoCDEs), a novel class of optogenetic tools that enables light-mediated induction of three types of programmed cell death (PCD)—apoptosis, pyroptosis, and necroptosis—using Arabidopsis thaliana photosensitive protein Cryptochrome-2. OptoCDEs enable a rapid and highly specific induction of PCD in human, mouse, and zebrafish cells and are suitable for a wide range of applications, such as sub-lethal cell death induction or precise elimination of single cells or cell populations in vitro and in vivo. As the proof-of-concept, we utilize optoCDEs to assess the differences in neighboring cell responses to apoptotic or necrotic PCD, revealing a new role for shingosine-1-phosphate signaling in regulating the efferocytosis of the apoptotic cell by epithelia.
87.

An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins.

blue CRY2/CIB1 HEK293T Immediate control of second messengers
J Biol Chem, 31 Mar 2022 DOI: 10.1016/j.jbc.2022.101893 Link to full text
Abstract: The Protein kinase C family consists of several closely related kinases. These enzymes regulate the function of proteins through the phosphorylation of hydroxyl groups on serines and/or threonines. The selective activation of individual PKC isozymes has proven challenging due to a lack of specific activator molecules. Here we developed an optogenetic, blue-light activated PKC isozyme that harnesses a plant-based dimerization system between the photosensitive cryptochrome-2 (CRY2) and the N-terminus of the transcription factor CIB1 (CIBN). We show that tagging CRY2 with the catalytic domain of PKC isozymes can efficiently promote its translocation to the cell surface upon blue light exposure. We demonstrate this system using PKCε and show that this leads to robust activation of a K+ channel (GIRK1/4) previously shown to be activated by PKCε. We anticipate that this approach can be utilized for other PKC isoforms to provide a reliable and direct stimulus for targeted membrane protein phosphorylation by the relevant PKCs.
88.

Spatio-temporal, optogenetic control of gene expression in organoids.

blue CRY2/CIB1 Magnets HEK293T human IPSCs Developmental processes Organelle manipulation
bioRxiv, 9 Feb 2022 DOI: 10.1101/2021.09.26.461850 Link to full text
Abstract: Organoids derived from stem cells become increasingly important to study human development and to model disease. However, methods are needed to control and study spatio-temporal patterns of gene expression in organoids. To this aim, we combined optogenetics and gene perturbation technologies to activate or knock-down RNA of target genes, at single-cell resolution and in programmable spatio-temporal patterns. To illustrate the usefulness of our approach, we locally activated Sonic Hedgehog (SHH) signaling in an organoid model for human neurodevelopment. High-resolution spatial transcriptomic and single-cell analyses showed that this local induction was sufficient to generate stereotypically patterned organoids in three dimensions and revealed new insights into SHH’s contribution to gene regulation in neurodevelopment. With this study, we propose optogenetic perturbations in combination with spatial transcriptomics as a powerful technology to reprogram and study cell fates and tissue patterning in organoids.
89.

Far-Red Light Triggered Production of Bispecific T Cell Engagers (BiTEs) from Engineered Cells for Antitumor Application.

red BphS HEK293T Hep G2 SK-HEP-1 Transgene expression
ACS Synth Biol, 3 Feb 2022 DOI: 10.1021/acssynbio.1c00523 Link to full text
Abstract: Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.
90.

Designing Single-Component Optogenetic Membrane Recruitment Systems: The Rho-Family GTPase Signaling Toolbox.

blue BcLOV4 HEK293T Signaling cascade control
ACS Synth Biol, 3 Jan 2022 DOI: 10.1021/acssynbio.1c00604 Link to full text
Abstract: We describe the efficient creation of single-component optogenetic tools for membrane recruitment-based signaling perturbation using BcLOV4 technology. The workflow requires two plasmids to create six different domain arrangements of the dynamic membrane binder BcLOV4, a fluorescent reporter, and the fused signaling protein of interest. Screening of this limited set of genetic constructs for expression characteristics and dynamic translocation in response to one pulse of light is sufficient to identify viable signaling control tools. The reliability of this streamlined approach is demonstrated by the creation of an optogenetic Cdc42 GTPase and Rac1-activating Tiam1 GEF protein, which together with our other recently reported technologies, completes a toolbox for spatiotemporally precise induction of Rho-family GTPase signaling at the GEF or GTPase level, for driving filopodial protrusions, lamellipodial protrusions, and cell contractility, respectively mediated by Cdc42, Rac1, and RhoA.
91.

Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.

blue CRY2/CIB1 PAL VVD HEK293T HeLa Transgene expression Epigenetic modification Endogenous gene expression
Nat Biotechnol, 3 Jan 2022 DOI: 10.1038/s41587-021-01112-1 Link to full text
Abstract: RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA effectors, LicV allows for optogenetic control of RNA localization, splicing, translation and stability in cell culture. Furthermore, LicV-assisted CRISPR-Cas systems allow for efficient and tunable photoswitchable regulation of transcription and genomic locus labeling. These data demonstrate that the photoswitchable RBP LicV can serve as a programmable scaffold for the spatiotemporal control of synthetic RNA effectors.
92.

Temperature-responsive optogenetic probes of cell signaling.

blue BcLOV4 CRY2/CRY2 iLID HEK293T NIH/3T3 Schneider 2 zebrafish in vivo Signaling cascade control
Nat Chem Biol, 22 Dec 2021 DOI: 10.1038/s41589-021-00917-0 Link to full text
Abstract: We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.
93.

Analysis of Three Architectures for Controlling PTP1B with Light.

blue AsLOV2 LOVTRAP Cos-7 E. coli HEK293T Transgene expression
ACS Synth Biol, 13 Dec 2021 DOI: 10.1021/acssynbio.1c00398 Link to full text
Abstract: Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.
94.

A far-red light-inducible CRISPR-Cas12a platform for remote-controlled genome editing and gene activation.

red BphS HEK293T Nucleic acid editing
Sci Adv, 10 Dec 2021 DOI: 10.1126/sciadv.abh2358 Link to full text
Abstract: The CRISPR-Cas12a has been harnessed as a powerful tool for manipulating targeted gene expression. The possibility to manipulate the activity of CRISPR-Cas12a with a more precise spatiotemporal resolution and deep tissue permeability will enable targeted genome engineering and deepen our understanding of the gene functions underlying complex cellular behaviors. However, currently available inducible CRISPR-Cas12a systems are limited by diffusion, cytotoxicity, and poor tissue permeability. Here, we developed a far-red light (FRL)–inducible CRISPR-Cas12a (FICA) system that can robustly induce gene editing in mammalian cells, and an FRL-inducible CRISPR-dCas12a (FIdCA) system based on the protein-tagging system SUperNova (SunTag) that can be used for gene activation under light-emitting diode–based FRL. Moreover, we show that the FIdCA system can be deployed to activate target genes in mouse livers. These results demonstrate that these systems developed here provide robust and efficient platforms for programmable genome manipulation in a noninvasive and spatiotemporal fashion.
95.

Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy.

blue CRY2olig HEK293T Neuro-2a primary mouse cortical neurons SH-SY5Y Organelle manipulation
Mol Cell, 20 Aug 2021 DOI: 10.1016/j.molcel.2021.07.038 Link to full text
Abstract: The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.
96.

Circularly permuted AsLOV2 as an optogenetic module for engineering photoswitchable peptides.

blue AsLOV2 cpLOV2 iLID HEK293T S. cerevisiae
Chem Commun (Camb), 22 Jul 2021 DOI: 10.1039/d1cc02643g Link to full text
Abstract: We re-engineered a commonly-used light-sensing protein, AsLOV2, using a circular permutation strategy to allow photoswitchable control of the C-terminus of a peptide. We demonstrate that the circularly permuted AsLOV2 can be used on its own or together with the original AsLOV2 for enhanced caging. In summary, circularly permuted AsLOV2 could expand the engineering capabilities of optogenetic tools.
97.

Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling.

blue BcLOV4 HEK293T Signaling cascade control Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
Adv Biol (Weinh), 21 Jul 2021 DOI: 10.1002/adbi.202100810 Link to full text
Abstract: Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation drives yes-associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP-transcriptional enhanced associate domain transcriptional activity. These single-transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.
98.

SPARK: A Transcriptional Assay for Recording Protein-Protein Interactions in a Defined Time Window.

blue AsLOV2 HEK293T
Curr Protoc, Jul 2021 DOI: 10.1002/cpz1.190 Link to full text
Abstract: Protein-protein interactions (PPIs) are ubiquitously involved in cellular processes such as gene expression, enzymatic catalysis, and signal transduction. To study dynamic PPIs, real-time methods such as Förster resonance energy transfer and bioluminescence resonance energy transfer can provide high temporal resolution, but they only allow PPI detection in a limited area at a time and do not permit post-PPI analysis or manipulation of the cells. Integration methods such as the yeast two-hybrid system and split protein systems integrate PPI signals over time and allow subsequent analysis, but they lose information on dynamics. To address some of these limitations, an assay named SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics) has recently been published. Similar to many existing integrators, SPARK converts PPIs into a transcriptional signal. SPARK, however, also adds blue light as a co-stimulus to achieve temporal gating; SPARK only records PPIs during light stimulation. Here, we describe the procedures for using SPARK assays to study a dynamic PPI of interest, including designing DNA constructs and optimization in HEK293T/17 cell cultures. These protocols are generally applicable to various PPI partners and can be used in different biological contexts. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Designing DNA constructs for SPARK Basic Protocol 2: Performing the SPARK assay in HEK293T/17 cell cultures Support Protocol 1: Lentivirus preparation Support Protocol 2: Immunostaining of SPARK components.
99.

Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch.

blue CRY2/CRY2 iLID HEK293T Jurkat NIH/3T3 SYF Signaling cascade control Organelle manipulation
Cell Rep, 22 Jun 2021 DOI: 10.1016/j.celrep.2021.109280 Link to full text
Abstract: Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state.
100.

A Light-Oxygen-Voltage Receptor Integrates Light and Temperature.

blue PtAU1-LOV RsLOV VfAU1-LOV VVD E. coli HEK293T
J Mol Biol, 17 Jun 2021 DOI: 10.1016/j.jmb.2021.167107 Link to full text
Abstract: Sensory photoreceptors enable organisms to adjust their physiology, behavior, and development in response to light, generally with spatiotemporal acuity and reversibility. These traits underlie the use of photoreceptors as genetically encoded actuators to alter by light the state and properties of heterologous organisms. Subsumed as optogenetics, pertinent approaches enable regulating diverse cellular processes, not least gene expression. Here, we controlled the widely used Tet repressor by coupling to light-oxygen-voltage (LOV) modules that either homodimerize or dissociate under blue light. Repression could thus be elevated or relieved, and consequently protein expression was modulated by light. Strikingly, the homodimeric RsLOV module from Rhodobacter sphaeroides not only dissociated under light but intrinsically reacted to temperature. The limited light responses of wild-type RsLOV at 37 °C were enhanced in two variants that exhibited closely similar photochemistry and structure. One variant improved the weak homodimerization affinity of 40 µM by two-fold and thus also bestowed light sensitivity on a receptor tyrosine kinase. Certain photoreceptors, exemplified by RsLOV, can evidently moonlight as temperature sensors which immediately bears on their application in optogenetics and biotechnology. Properly accounted for, the temperature sensitivity can be leveraged for the construction of signal-responsive cellular circuits.
Submit a new publication to our database