Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 142 results
76.

Optogenetics in plants.

blue green red UV Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
New Phytol, 16 Oct 2020 DOI: 10.1111/nph.17008 Link to full text
Abstract: The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatio-temporal and quantitative resolution, in a reversible manner with minimal side effects. Optogenetics has revolutionised the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straight forward given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.
77.

Optogenetic interrogation and control of cell signaling.

blue cyan green near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Biotechnol, 11 Oct 2020 DOI: 10.1016/j.copbio.2020.07.007 Link to full text
Abstract: Signaling networks control the flow of information through biological systems and coordinate the chemical processes that constitute cellular life. Optogenetic actuators - genetically encoded proteins that undergo light-induced changes in activity or conformation - are useful tools for probing signaling networks over time and space. They have permitted detailed dissections of cellular proliferation, differentiation, motility, and death, and enabled the assembly of synthetic systems with applications in areas as diverse as photography, chemical synthesis, and medicine. In this review, we provide a brief introduction to optogenetic systems and describe their application to molecular-level analyses of cell signaling. Our discussion highlights important research achievements and speculates on future opportunities to exploit optogenetic systems in the study and assembly of complex biochemical networks.
78.

Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly.

green TtCBD in vitro Extracellular optogenetics
Sci Adv, 9 Oct 2020 DOI: 10.1126/sciadv.abc4824 Link to full text
Abstract: Axon regeneration constitutes a fundamental challenge for regenerative neurobiology, which necessitates the use of tailor-made biomaterials for controllable delivery of cells and biomolecules. An increasingly popular approach for creating these materials is to directly assemble engineered proteins into high-order structures, a process that often relies on sophisticated protein chemistry. Here, we present a simple approach for creating injectable, photoresponsive hydrogels via metal-directed assembly of His6-tagged proteins. The B12-dependent photoreceptor protein CarHC can complex with transition metal ions through an amino-terminal His6-tag, which can further undergo a sol-gel transition upon addition of AdoB12, leading to the formation of hydrogels with marked injectability and photodegradability. The inducible phase transitions further enabled facile encapsulation and release of cells and proteins. Injecting the Zn2+-coordinated gels decorated with leukemia inhibitory factor into injured mouse optic nerves led to prolonged cellular signaling and enhanced axon regeneration. This study illustrates a powerful strategy for designing injectable biomaterials.
79.

Optogenetics and biosensors set the stage for metabolic cybergenetics.

blue green near-infrared red UV violet BLUF domains Cryptochromes LOV domains PAL Phytochromes UV receptors Review
Curr Opin Biotechnol, 11 Sep 2020 DOI: 10.1016/j.copbio.2020.07.012 Link to full text
Abstract: Cybergenetic systems use computer interfaces to enable feed-back controls over biological processes in real time. The complex and dynamic nature of cellular metabolism makes cybergenetics attractive for controlling engineered metabolic pathways in microbial fermentations. Cybergenetics would not only create new avenues of research into cellular metabolism, it would also enable unprecedented strategies for pathway optimization and bioreactor operation and automation. Implementation of metabolic cybergenetics, however, will require new capabilities from actuators, biosensors, and control algorithms. The recent application of optogenetics in metabolic engineering, the expanding role of genetically encoded biosensors in strain development, and continued progress in control algorithms for biological processes suggest that this technology will become available in the not so distant future.
80.

Light control of RTK activity: from technology development to translational research.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Sci, 7 Sep 2020 DOI: 10.1039/d0sc03570j Link to full text
Abstract: Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
81.

Controlling gene expression with light: a multidisciplinary endeavour.

blue green near-infrared red Cryptochromes LOV domains Phytochromes Review
Biochem Soc Trans, 28 Aug 2020 DOI: 10.1042/bst20200014 Link to full text
Abstract: The expression of a gene to a protein is one of the most vital biological processes. The use of light to control biology offers unparalleled spatiotemporal resolution from an external, orthogonal signal. A variety of methods have been developed that use light to control the steps of transcription and translation of specific genes into proteins, for cell-free to in vivo biotechnology applications. These methods employ techniques ranging from the modification of small molecules, nucleic acids and proteins with photocages, to the engineering of proteins involved in gene expression using naturally light-sensitive proteins. Although the majority of currently available technologies employ ultraviolet light, there has been a recent increase in the use of functionalities that work at longer wavelengths of light, to minimise cellular damage and increase tissue penetration. Here, we discuss the different chemical and biological methods employed to control gene expression, while also highlighting the central themes and the most exciting applications within this diverse field.
82.

In situ characterisation and manipulation of biological systems with Chi.Bio.

green CcaS/CcaR E. coli
PLoS Biol, 30 Jul 2020 DOI: 10.1371/journal.pbio.3000794 Link to full text
Abstract: The precision and repeatability of in vivo biological studies is predicated upon methods for isolating a targeted subsystem from external sources of noise and variability. However, in many experimental frameworks, this is made challenging by nonstatic environments during host cell growth, as well as variability introduced by manual sampling and measurement protocols. To address these challenges, we developed Chi.Bio, a parallelised open-source platform that represents a new experimental paradigm in which all measurement and control actions can be applied to a bulk culture in situ. In addition to continuous-culturing capabilities, it incorporates tunable light outputs, spectrometry, and advanced automation features. We demonstrate its application to studies of cell growth and biofilm formation, automated in silico control of optogenetic systems, and readout of multiple orthogonal fluorescent proteins in situ. By integrating precise measurement and actuation hardware into a single low-cost platform, Chi.Bio facilitates novel experimental methods for synthetic, systems, and evolutionary biology and broadens access to cutting-edge research capabilities.
83.

Design and Application of Light-Regulated Receptor Tyrosine Kinases.

blue green red Cph1 MxCBD TtCBD VfAU1-LOV HEK293
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_16 Link to full text
Abstract: Understanding how the activity of membrane receptors and cellular signaling pathways shapes cell behavior is of fundamental interest in basic and applied research. Reengineering receptors to react to light instead of their cognate ligands allows for generating defined signaling inputs with high spatial and temporal precision and facilitates the dissection of complex signaling networks. Here, we describe fundamental considerations in the design of light-regulated receptor tyrosine kinases (Opto-RTKs) and appropriate control experiments. We also introduce methods for transient receptor expression in HEK293 cells, quantitative assessment of signaling activity in reporter gene assays, semiquantitative assessment of (in)activation time courses through Western blot (WB) analysis, and easy to implement light stimulation hardware.
84.

Non-neuromodulatory Optogenetic Tools in Zebrafish.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Front Cell Dev Biol, 3 Jun 2020 DOI: 10.3389/fcell.2020.00418 Link to full text
Abstract: The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
85.

Flux controlling technology for central carbon metabolism for efficient microbial bio-production.

blue green LOV domains Phytochromes Review
Curr Opin Biotechnol, 30 May 2020 DOI: 10.1016/j.copbio.2020.04.003 Link to full text
Abstract: Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
86.

Why is CarH photolytically active in comparison to other B12-dependent enzymes?

green Cobalamin-binding domains Background
J Photochem Photobiol B, Biol, 28 May 2020 DOI: 10.1016/j.jphotobiol.2020.111919 Link to full text
Abstract: The discovery of naturally occurring B12-depedent photoreceptors has allowed for applications of cobalamins (Cbls) in optogenetics and synthetic biology to emerge. However, theoretical investigations of the complex mechanisms of these systems have been lacking. Adenosylcobalamin (AdoCbl)-dependent photoreceptor, CarH, is one example and it relies on daylight to perform its catalytic function. Typically, in enzymes employing AdoCbl as their cofactor, the Co-C5' bond activation and cleavage is triggered by substrate binding. The cleavage of the Co-C5' bond is homolytic resulting in radical pair formation. However, in CarH, this bond is instead activated by light. To explore this peculiarity, the ground and first excited state potential energy surfaces (PESs) were constructed using the quantum mechanics/molecular mechanics (QM/MM) framework and compared with other AdoCbl-dependent enzymes. QM/MM results indicate that CarH is photolytically active as a result of the AdoCbl dual role, acting as a radical generator and as a substrate. Photo-cleavage of the Co-C5' bond and subsequent H-atom abstraction is possible because of the specific orientation of the H-C4' bond with respect to the Co(II) center. Comparison with other AdoCbl-dependent enzymes indicate that the protein environment in the CarH active center alters the photochemistry of AdoCbl by controlling the stereochemistry of the ribose moiety.
87.

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes.

green red Phytochromes Review
Mol Cells, 22 May 2020 DOI: 10.14348/molcells.2020.0077 Link to full text
Abstract: To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.
88.

Turning Cell Adhesions ON or OFF with High Spatiotemporal Precision Using the Green Light Responsive Protein CarH.

green TtCBD MCF7 Control of cell-cell / cell-material interactions Extracellular optogenetics
Chemistry, 9 Apr 2020 DOI: 10.1002/chem.202001238 Link to full text
Abstract: Spatiotemporal control of integrin-mediated cell adhesions to extracellular matrix regulates cell behavior with has numerous implications for biotechnological applications. In this work, two approaches for regulating cell adhesions in space and time with high precision are reported, both of which utilize green light. In the first design, CarH, which is a tetramer in the dark, is used to mask cRGD adhesion-peptides on a surface. Upon green light illumination, the CarH tetramer dissociates into its monomers, revealing the adhesion peptide so that cells can adhere. In the second design, the RGD motif is incorporated into the CarH protein tetramer such that cells can adhere to surfaces functionalized with this protein. The cell adhesions can be disrupted with green light, due to the disassembly of the CarH-RGD protein. Both designs allow for photoregulation with noninvasive visible light and open new possibilities to investigate the dynamical regulation of cell adhesions in cell biology.
89.

Functional Modulation of Receptor Proteins on Cellular Interface with Optogenetic System.

blue green red UV violet Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_15 Link to full text
Abstract: In multicellular organisms, living cells cooperate with each other to exert coordinated complex functions by responding to extracellular chemical or physical stimuli via proteins on the plasma membrane. Conventionally, chemical signal transduction or mechano-transduction has been investigated by chemical, genetic, or physical perturbation; however, these methods cannot manipulate biomolecular reactions at high spatiotemporal resolution. In contrast, recent advances in optogenetic perturbation approaches have succeeded in controlling signal transduction with external light. The methods have enabled spatiotemporal perturbation of the signaling, providing functional roles of the specific proteins. In this chapter, we summarize recent advances in the optogenetic tools that modulate the function of a receptor protein. While most optogenetic systems have been devised for controlling ion channel conductivities, the present review focuses on the other membrane proteins involved in chemical transduction or mechano-transduction. We describe the properties of natural or artificial photoreceptor proteins used in optogenetic systems. Then, we discuss the strategies for controlling the receptor protein functions by external light. Future prospects of optogenetic tool development are discussed.
90.

Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.

green near-infrared red violet Phytochromes Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_10 Link to full text
Abstract: In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
91.

Multiple-site diversification of regulatory sequences enables inter-species operability of genetic devices.

green CcaS/CcaR P. putida
ACS Synth Biol, 3 Dec 2019 DOI: 10.1021/acssynbio.9b00375 Link to full text
Abstract: The features of the light-responsive cyanobacterial CcaSR regulatory module that determine interoperability of this optogenetic device between Escherichia coli and Pseudomonas putida have been examined. For this, all structural parts (i.e. ho1 and pcyA genes for synthesis of phycocyanobilin, the ccaS/ccaR system from Synechocystis and its cognate downstream promoter) were maintained but their expression levels and stoichiometry diversified by [i] reassembling them together in a single broad host range, standardized vector and [ii] subjecting the non-coding regulatory sequences to multiple cycles of directed evolution with random genomic mutations (DIvERGE), a recombineering method that intensifies mutation rates within discrete DNA segments. Once passed to P. putida, various clones displayed a wide dynamic range, insignificant leakiness and excellent capacity in response to green light. Inspection of the evolutionary intermediates pinpointed translational control as the main bottleneck for interoperability and suggested a general approach for easing the exchange of genetic cargoes between different species i.e. optimization of relative expression levels and upturning of subcomplex stoichiometry.
92.

Structural Basis of Design and Engineering for Advanced Plant Optogenetics.

blue green red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Plant Sci, 4 Nov 2019 DOI: 10.1016/j.tplants.2019.10.002 Link to full text
Abstract: In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
93.

Optogenetics sheds new light on tissue engineering and regenerative medicine.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biomaterials, 16 Oct 2019 DOI: 10.1016/j.biomaterials.2019.119546 Link to full text
Abstract: Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
94.

Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology.

blue green near-infrared LOV domains Phytochromes Review
Microorganisms, 29 Sep 2019 DOI: 10.3390/microorganisms7100409 Link to full text
Abstract: Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.
95.

Light-inducible flux control of triosephosphate isomerase on glycolysis in Escherichia coli.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 20 Aug 2019 DOI: 10.1002/bit.27148 Link to full text
Abstract: An engineering tool for controlling flux distribution on metabolic pathways to an appropriate state is highly desirable in bio-production. An optogenetic switch, which regulates gene expression by light illumination is an attractive on/off switchable system, and is a promising way for flux control with an external stimulus. We demonstrated a light-inducible flux control between glycolysis and the methylglyoxal (MGO) pathway in Escherichia coli using a CcaS/CcaR system. CcaR is phosphorylated by green light and is dephosphorylated by red light. Phosphorylated CcaR induces gene expression under the cpcG2 promoter. The tpiA gene was expressed under the cpcG2 promoter in a genomic tpiA deletion strain. The strain was then cultured with glucose minimum medium under green or red light. We found that tpiA mRNA level under green light was four times higher than that under red light. The repression of tpiA expression led to a decrease in glycolytic flux, resulting in slower growth under red light (0.25 h-1 ) when compared to green light (0.37 h-1 ). The maximum extracellular MGO concentration under red light (0.2 mM) was higher than that under green light (0.05 mM). These phenotypes confirm that the MGO pathway flux was enhanced under red light. This article is protected by copyright. All rights reserved.
96.

Optogenetic control of Bacillus subtilis gene expression.

green CcaS/CcaR B. subtilis Transgene expression
Nat Commun, 15 Jul 2019 DOI: 10.1038/s41467-019-10906-6 Link to full text
Abstract: The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.
97.

Light-induced dimerization approaches to control cellular processes.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chemistry, 15 Jul 2019 DOI: 10.1002/chem.201900562 Link to full text
Abstract: Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.
98.

Optogenetic switch for controlling the central metabolic flux of Escherichia coli.

green CcaS/CcaR E. coli Transgene expression
Metab Eng, 14 Jun 2019 DOI: 10.1016/j.ymben.2019.06.002 Link to full text
Abstract: Dynamically controlling cellular metabolism can improve a cell's yield and productivity towards a target compound. However, the application of this strategy is currently limited by the availability of reversible metabolic switches. Unlike chemical inducers, light can readily be applied and removed from the medium multiple times without causing chemical changes. This makes light-inducible systems a potent tool to dynamically control cellular metabolism. Here we describe the construction of a light-inducible metabolic switch to regulate flux distribution between two glycolytic pathways, the Embden-Meyerhof-Parnas (EMP) and oxidative pentose phosphate (oxPP) pathways. This was achieved by using chromatic acclimation sensor/regulator (CcaSR) optogenetic system to control the expression of pgi, a metabolic gene which expression determines flux distribution between EMP and oxPP pathways. Control over these pathways may allow us to maximize Escherichia coli's yield on highly-reduced compounds such as mevalonate. Background pgi expression of the initial CcaSR construct was too high to significantly reduce pgi expression during the OFF-state. Therefore, we attenuated the system's output leakage by adjusting plasmid copy number and by tagging Pgi with ssRA protein degradation signal. Using our CcaSR-pgi ver.3, we could control EMP:oxPP flux ratio to 50:49 and 0.5:99 (of total glycolytic flux) by exposure to green and red light, respectively.
99.

Light-Controlled, High-Resolution Patterning of Living Engineered Bacteria Onto Textiles, Ceramics, and Plastic.

blue green red CcaS/CcaR Cph1 YtvA E. coli Multichromatic
Adv Funct Mater, 27 May 2019 DOI: 10.1002/adfm.201901788 Link to full text
Abstract: Living cells can impart materials with advanced functions, such as sense-and-respond, chemical production, toxin remediation, energy generation and storage, self-destruction, and self-healing. Here, an approach is presented to use light to pattern Escherichia coli onto diverse materials by controlling the expression of curli fibers that anchor the formation of a biofilm. Different colors of light are used to express variants of the structural protein CsgA fused to different peptide tags. By projecting color images onto the material containing bacteria, this system can be used to pattern the growth of composite materials, including layers of protein and gold nanoparticles. This is used to pattern cells onto materials used for 3D printing, plastics (polystyrene), and textiles (cotton). Further, the adhered cells are demonstrated to respond to sensory information, including small molecules (IPTG and DAPG) and light from light-emitting diodes. This work advances the capacity to engineer responsive living materials in which cells provide diverse functionality.
100.

Rewiring bacterial two-component systems by modular DNA-binding domain swapping.

green red CcaS/CcaR Cph1 E. coli
Nat Chem Biol, 20 May 2019 DOI: 10.1038/s41589-019-0286-6 Link to full text
Abstract: Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways and valuable sensors for synthetic biology. However, most TCSs remain uncharacterized or difficult to harness for applications. Major challenges are that many TCS output promoters are unknown, subject to cross-regulation, or silent in heterologous hosts. Here, we demonstrate that the two largest families of response regulator DNA-binding domains can be interchanged with remarkable flexibility, enabling the corresponding TCSs to be rewired to synthetic output promoters. We exploit this plasticity to eliminate cross-regulation, un-silence a gram-negative TCS in a gram-positive host, and engineer a system with over 1,300-fold activation. Finally, we apply DNA-binding domain swapping to screen uncharacterized Shewanella oneidensis TCSs in Escherichia coli, leading to the discovery of a previously uncharacterized pH sensor. This work should accelerate fundamental TCS studies and enable the engineering of a large family of genetically encoded sensors with diverse applications.
Submit a new publication to our database