Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 1565 results
76.

PIP5K-Ras bistability initiates plasma membrane symmetry breaking to regulate cell polarity and migration.

blue CRY2/CIB1 iLID D. discoideum HL-60 MDA-MB-231 RAW264.7 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 15 Sep 2024 DOI: 10.1101/2024.09.15.613115 Link to full text
Abstract: Symmetry breaking, polarity establishment, and spontaneous cell protrusion formation are fundamental but poorly explained cell behaviors. Here, we demonstrate that a biochemical network, where the mutually inhibitory localization of PIP5K and Ras activities plays a central role, governs these processes. First, in resting cells devoid of cytoskeletal activity, PIP5K is uniformly elevated on the plasma membrane, while Ras activity remains minimal. Symmetry is broken by spontaneous local displacements of PIP5K, coupled with simultaneous activations of Ras and downstream signaling events, including PI3K activation. Second, knockout of PIP5K dramatically increases both the incidence and size of Ras-PI3K activation patches, accompanied by branched F-actin assembly. This leads to enhanced cortical wave formation, increased protrusive activity, and a shift in migration mode. Third, high inducible overexpression of PIP5K virtually eliminates Ras-PI3K signaling, cytoskeletal activity, and cell migration, while acute recruitment of cytosolic PIP5K to the membrane induces contraction and blebs in cancer cells. These arrested phenotypes are reversed by reducing myosin II activity, indicating myosin’s involvement in the PIP5K-Ras-centered regulatory network. Remarkably, low inducible overexpression of PIP5K unexpectedly facilitates polarity establishment, highlighting PIP5K as a highly sensitive master regulator of these processes. Simulations of a computational model combining an excitable system, cytoskeletal loops, and dynamic partitioning of PIP5K recreates the experimental observations. Taken together, our results reveal that a bistable, mutually exclusive localization of PIP5K and active Ras on the plasma membrane triggers the initial symmetry breaking. Coupled actomyosin reduction and increased actin polymerization lead to intermittently extended protrusions and, with feedback from the cytoskeleton, self-organizing, complementary gradients of PIP5K versus Ras steepen, raising the threshold of the networks at the rear and lowering it at the front to generate polarity for cell migration.
77.

C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology.

blue CRY2/CRY2 CRY2olig HeLa hESCs Organelle manipulation
iScience, 14 Sep 2024 DOI: 10.1016/j.isci.2024.110937 Link to full text
Abstract: Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
78.

Systems mapping of bidirectional endosomal transport through the crowded cell.

blue iLID MEL-JUSO Control of intracellular / vesicular transport
Curr Biol, 13 Sep 2024 DOI: 10.1016/j.cub.2024.08.026 Link to full text
Abstract: Kinesin and dynein-dynactin motors move endosomes and other vesicles bidirectionally along microtubules, a process mainly studied under in vitro conditions. Here, we provide a physiological bidirectional transport model following color-coded, endogenously tagged transport-related proteins as they move through a crowded cellular environment. Late endosomes (LEs) surf bidirectionally on Protrudin-enriched endoplasmic reticulum (ER) membrane contact sites, while hopping and gliding along microtubules and bypassing cellular obstacles, such as mitochondria. During bidirectional transport, late endosomes do not switch between opposing Rab7 GTPase effectors, RILP and FYCO1, or their associated dynein and KIF5B motor proteins, respectively. In the endogenous setting, far fewer motors associate with endosomal membranes relative to effectors, implying coordination of transport with other aspects of endosome physiology through GTPase-regulated mechanisms. We find that directionality of transport is provided in part by various microtubule-associated proteins (MAPs), including MID1, EB1, and CEP169, which recruit Lis1-activated dynein motors to microtubule plus ends for transport of early and late endosomal populations. At these microtubule plus ends, activated dynein motors encounter the dynactin subunit p150glued and become competent for endosomal capture and minus-end movement in collaboration with membrane-associated Rab7-RILP. We show that endosomes surf over the ER through the crowded cell and move bidirectionally under the control of MAPs for motor activation and through motor replacement and capture by endosomal anchors.
79.

Modulating Polymerase Activity through Light-Oxygen-Voltage Domain Insertion.

blue LOV domains Background
Chembiochem, 4 Sep 2024 DOI: 10.1002/cbic.202400536 Link to full text
Abstract: Biochemical reaction networks adapt to environmental conditions by sensing chemical or physical stimuli and using tightly controlled mechanisms. While most signals come from molecules, many cells can also sense and respond to light. Among the biomolecular structures that enable light sensing, we selected a light-oxygen-voltage (LOV) domain in a previous study that tested the engineering of novel regulatory mechanisms into a nucleic acid polymerase. In this follow-up study, we studied the activities of previously selected variants in kinetic detail, and we generated additional LOV-polymerase fusion variants based on further insertion criteria. Our results provide mechanistic insights into how LOV domain insertion influences polymerase activity in a light-responsive manner: All active and photoresponsive enzyme variants studied by us to date were partially inhibited (i.e., "turned off") after irradiation with blue light at 470 nm, which can be explained by specific obstructions of the polymerase entry or exit structures (substrate entry channels or product exit channels, or both). Although the effects observed are moderate, we anticipate further engineering strategies that could be used to improve the extent of switchability and possibly to develop a "turn-on mode" insertion.
80.

Optogenetic control of early embryos labeling using photoactivatable Cre recombinase 3.0.

blue Magnets isolated MEFs mouse in vivo Transgene expression Developmental processes
FEBS Open Bio, 2 Sep 2024 DOI: 10.1002/2211-5463.13862 Link to full text
Abstract: Establishing a highly efficient photoactivatable Cre recombinase PA-Cre3.0 can allow spatiotemporal control of Cre recombinase activity. This technique may help to elucidate cell lineages, as well as facilitate gene and cell function analysis during development. This study examined the blue light-mediated optical regulation of Cre-loxP recombination using PA-Cre3.0 transgenic early mouse pre-implantation embryos. We found that inducing PA-Cre3.0 expression in the heterozygous state did not show detectable recombination activation with blue light. Conversely, in homozygous embryos, DNA recombination by PA-Cre3.0 was successfully induced by blue light and resulted in the activation of the red fluorescent protein reporter gene, while almost no leaks of Cre recombination activity were detected in embryos without light illumination. Thus, we characterize the conditions under which the PA-Cre3.0 system functions efficiently in early mouse embryos. These results are expected to provide a new optogenetic tool for certain biological studies, such as developmental process analysis and lineage tracing in early mouse embryos.
81.

In vivo optogenetic manipulations of endogenous proteins reveal spatiotemporal roles of microtubule and kinesin in dendrite patterning.

blue CRY2olig Magnets D. melanogaster in vivo Larvae C4da neurons Larvae epidermal cells Control of cytoskeleton / cell motility / cell shape Neuronal activity control
Sci Adv, 30 Aug 2024 DOI: 10.1126/sciadv.adp0138 Link to full text
Abstract: During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in Drosophila. This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
82.

Feedback regulation by the RhoA-specific GEF ARHGEF17 regulates actomyosin network disassembly.

blue iLID REF52 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 28 Aug 2024 DOI: 10.1101/2024.08.28.610052 Link to full text
Abstract: We report that the RhoA-specific guanine nucleotide exchange factor ARHGEF17 localizes at the back of a fibroblast’s contractile lamella and regulates its disassembly. This localization emerges through retrograde ARHGEF17 transport together with actomyosin flow that most likely involves interactions with ATP-actin at F-actin barbed ends. During this process, ARHGEF17 increasingly oligomerizes into clusters that co-localize with myosin filaments, and correlate with their disassembly at lamella’s distal edge. ARHGEF17 loss of function leads to decreased RhoA activity at the lamella back and impairs its disassembly. High RhoA activity is however maintained at the lamella front where phosphorylated myosin light chain is observed. We propose that low levels of actomyosin network fracture at the lamella back generates barbed ends leading to generation of ATP-actin and ARHGEF17 binding, local activation of RhoA-dependent contractility, ensuring robust lamella disassembly. ARHGEF17 exemplifies the spatio-temporal complexity of Rho GTPase signaling and the requirement of feedback mechanism for homeostasis of contractile actomyosin networks.
83.

Integrating bioprinting and optogenetic technologies for precision plant tissue engineering.

blue green red Cobalamin-binding domains LOV domains Phytochromes Review
Curr Opin Biotechnol, 28 Aug 2024 DOI: 10.1016/j.copbio.2024.103193 Link to full text
Abstract: Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
84.

Selective optogenetic inhibition of Gαq or Gαi signaling by minimal RGS domains disrupts circuit functionality and circuit formation.

blue CRY2/CIB1 C. elegans in vivo D. melanogaster in vivo HEK293 rat dorsal root ganglion NSCs Signaling cascade control Neuronal activity control
Proc Natl Acad Sci U S A, 27 Aug 2024 DOI: 10.1073/pnas.2411846121 Link to full text
Abstract: Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
85.

ERK synchronizes embryonic cleavages in Drosophila.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Dev Cell, 27 Aug 2024 DOI: 10.1016/j.devcel.2024.08.004 Link to full text
Abstract: Extracellular-signal-regulated kinase (ERK) signaling controls development and homeostasis and is genetically deregulated in human diseases, including neurocognitive disorders and cancers. Although the list of ERK functions is vast and steadily growing, the full spectrum of processes controlled by any specific ERK activation event remains unknown. Here, we show how ERK functions can be systematically identified using targeted perturbations and global readouts of ERK activation. Our experimental model is the Drosophila embryo, where ERK signaling at the embryonic poles has thus far only been associated with the transcriptional patterning of the future larva. Through a combination of live imaging and phosphoproteomics, we demonstrated that ERK activation at the poles is also critical for maintaining the speed and synchrony of embryonic cleavages. The presented approach to interrogating phosphorylation networks identifies a hidden function of a well-studied signaling event and sets the stage for similar studies in other organisms.
86.

From resonance to chaos by modulating spatiotemporal patterns through a synthetic optogenetic oscillator.

blue YtvA E. coli Transgene expression
Nat Commun, 23 Aug 2024 DOI: 10.1038/s41467-024-51626-w Link to full text
Abstract: Oscillations are a recurrent phenomenon in biological systems across scales, but deciphering their fundamental principles is very challenging. Here, we tackle this challenge by redesigning the wellcharacterised synthetic oscillator known as "repressilator" in Escherichia coli and controlling it using optogenetics, creating the "optoscillator". Bacterial colonies manifest oscillations as spatial ring patterns. When we apply periodic light pulses, the optoscillator behaves as a forced oscillator and we systematically investigate the properties of the rings under various light conditions. Combining experiments with mathematical modeling, we demonstrate that this simple oscillatory circuit can generate complex dynamics that are transformed into distinct spatial patterns. We report the observation of synchronisation, resonance, subharmonic resonance and period doubling. Furthermore, we present evidence of a chaotic regime. This work highlights the intricate spatiotemporal patterns accessible by synthetic oscillators and underscores the potential of our approach in revealing fundamental principles of biological oscillations.
87.

Programming mammalian cell behaviors by physical cues.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 22 Aug 2024 DOI: 10.1016/j.tibtech.2024.07.014 Link to full text
Abstract: In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
88.

Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport.

blue LOVTRAP U-2 OS Control of intracellular / vesicular transport
Cell Rep, 18 Aug 2024 DOI: 10.1016/j.celrep.2024.114649 Link to full text
Abstract: Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.
89.

Optogenetic tools for inducing organelle membrane rupture.

blue AsLOV2 HeLa Organelle manipulation
bioRxiv, 13 Aug 2024 DOI: 10.1101/2024.08.13.607738 Link to full text
Abstract: Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of organelles of interest is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of rupture of specific membranes remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), whose primary function is to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their target membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2–BAX fusion protein exhibits blue light–dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2–BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.
90.

Bacteria-based cascade in situ near-infrared nano-optogenetically induced photothermal tumor therapy.

blue EL222 E. coli Transgene expression
Theranostics, 12 Aug 2024 DOI: 10.7150/thno.98097 Link to full text
Abstract: Rationale: Optogenetically engineered facultative anaerobic bacteria exhibit a favorable tendency to colonize at solid tumor sites and spatiotemporally-programmable therapeutics release abilities, attracting extensive attention in precision tumor therapy. However, their therapeutic efficacy is moderate. Conventional photothermal agents with high tumor ablation capabilities exhibit low tumor targeting efficiency, resulting in significant off-target side effects. The combination of optogenetics and photothermal therapy may offer both tumor-targeting and excellent tumor-elimination capabilities, which unfortunately has rarely been investigated. Herein, we construct a bacteria-based cascade near-infrared optogentical-photothermal system (EcNαHL-UCNPs) for enhanced tumor therapy. Methods: EcNαHL-UCNPs consists of an optogenetically engineered Escherichia coli Nissle 1917 (EcN) conjugated with lanthanide-doped upconversion nanoparticles (UCNPs), which are capable of locally secreting α-hemolysin (αHL), a pore-forming protein, in responsive to NIR irradiation. Anti-tumor effects of EcNαHL-UCNPs were determined in both H22 and 4T1 tumors. Results: The αHL not only eliminates tumor cells, but more importantly disrupts endothelium to form thrombosis as an in situ photothermal agent in tumors. The in situ formed thrombosis significantly potentiates the photothermic ablation of H22 tumors upon subsequent NIR light irradiation. Besides, αHL secreted by EcNαHL-UCNPs under NIR light irradiation not only inhibits 4T1 tumor growth, but also suppresses metastasis of 4T1 tumor via inducing the immune response. Conclusion: Our studies highlight bacteria-based cascade optogenetical-photothermal system for precise and effective tumor therapy.
91.

Induction of bacterial expression at the mRNA level by light.

blue red DrBphP PAL E. coli Transgene expression Multichromatic
Nucleic Acids Res, 10 Aug 2024 DOI: 10.1093/nar/gkae678 Link to full text
Abstract: Vital organismal processes, including development, differentiation and adaptation, involve altered gene expression. Although expression is frequently controlled at the transcriptional stage, various regulation mechanisms operate at downstream levels. Here, we leverage the photoreceptor NmPAL to optogenetically induce RNA refolding and the translation of bacterial mRNAs. Blue-light-triggered NmPAL binding disrupts a cis-repressed mRNA state, thereby relieves obstruction of translation initiation, and upregulates gene expression. Iterative probing and optimization of the circuit, dubbed riboptoregulator, enhanced induction to 30-fold. Given action at the mRNA level, the riboptoregulator can differentially regulate individual structural genes within polycistronic operons. Moreover, it is orthogonal to and can be wed with other gene-regulatory circuits for nuanced and more stringent gene-expression control. We thus advance the pAurora2 circuit that combines transcriptional and translational mechanisms to optogenetically increase bacterial gene expression by >1000-fold. The riboptoregulator strategy stands to upgrade numerous regulatory circuits and widely applies to expression control in microbial biotechnology, synthetic biology and materials science.
92.

Prior Fc receptor activation primes macrophages for increased sensitivity to IgG via long-term and short-term mechanisms.

blue CRY2olig primary mouse BMDMs RAW264.7 Signaling cascade control Control of intracellular / vesicular transport
Dev Cell, 9 Aug 2024 DOI: 10.1016/j.devcel.2024.07.017 Link to full text
Abstract: Macrophages measure the "eat-me" signal immunoglobulin G (IgG) to identify targets for phagocytosis. We tested whether prior encounters with IgG influence macrophage appetite. IgG is recognized by the Fc receptor. To temporally control Fc receptor activation, we engineered an Fc receptor that is activated by the light-induced oligomerization of Cry2, triggering phagocytosis. Using this tool, we demonstrate that subthreshold Fc receptor activation primes mouse bone-marrow-derived macrophages to be more sensitive to IgG in future encounters. Macrophages that have previously experienced subthreshold Fc receptor activation eat more IgG-bound human cancer cells. Increased phagocytosis occurs by two discrete mechanisms-a short- and long-term priming. Long-term priming requires new protein synthesis and Erk activity. Short-term priming does not require new protein synthesis and correlates with an increase in Fc receptor mobility. Our work demonstrates that IgG primes macrophages for increased phagocytosis, suggesting that therapeutic antibodies may become more effective after initial priming doses.
93.

Dimerization activates the Inversin complex in C. elegans.

blue VVD Signaling cascade control Developmental processes
Mol Biol Cell, 7 Aug 2024 DOI: 10.1091/mbc.e24-05-0218 Link to full text
Abstract: Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static “Inversin complex” or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states–-an active dimer and an inactive monomer–-gates the output of the Inversin complex.
94.

Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag.

blue iLID HEK293T NIH/3T3 Organelle manipulation
Nat Commun, 7 Aug 2024 DOI: 10.1038/s41467-024-50858-0 Link to full text
Abstract: Biomolecular condensates are broadly implicated in both normal cellular regulation and disease. Consequently, several chemical biology and optogenetic approaches have been developed to induce phase separation of a protein of interest. However, few tools are available to perform the converse function - dissolving a condensate of interest on demand. Such a tool would aid in testing whether the condensate plays specific functional roles. Here we show that light-gated recruitment of a solubilizing domain, maltose-binding protein (MBP), results in rapid and controlled dissolution of condensates formed from proteins of interest. Our optogenetic MBP-based dissolution strategy (OptoMBP) is rapid, reversible, and can be spatially controlled with subcellular precision. We also provide a proof-of-principle application of OptoMBP by disrupting condensation of the oncogenic fusion protein FUS-CHOP and reverting FUS-CHOP driven transcriptional changes. We envision that the OptoMBP system could be broadly useful for disrupting constitutive protein condensates to probe their biological functions.
95.

Neuropeptidergic regulation of neuromuscular signaling in larval zebrafish alters swimming behavior and synaptic transmission.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers Neuronal activity control
iScience, 6 Aug 2024 DOI: 10.1016/j.isci.2024.110687 Link to full text
Abstract: Chemical synaptic transmission is modulated to accommodate different activity levels, thus enabling homeostatic scaling in pre- and postsynaptic compartments. In nematodes, cholinergic neurons use neuropeptide signaling to modulate synaptic vesicle content. To explore if this mechanism is conserved in vertebrates, we studied the involvement of neuropeptides in cholinergic transmission at the neuromuscular junction of larval zebrafish. Optogenetic stimulation by photoactivated adenylyl cyclase evoked locomotion. We generated mutants lacking the neuropeptide-processing enzyme carboxypeptidase E (cpe), and the most abundant neuropeptide precursor in motor neurons, tachykinin (tac1). Both mutants showed exaggerated locomotion after photostimulation. Recording excitatory postsynaptic currents demonstrated overall larger amplitudes in the wild type. Exaggerated locomotion in the mutants thus reflected upscaling of postsynaptic excitability. Both mutant muscles expressed more nicotinic acetylcholine receptors (nAChRs) on their surface; thus, neuropeptide signaling regulates synaptic transmitter output in zebrafish motor neurons, and muscle cells homeostatically regulate nAChR surface expression, compensating reduced presynaptic input.
96.

Stress pathway outputs are encoded by pH-dependent clustering of kinase components.

blue CRY2clust HEK293 Organelle manipulation
Nat Commun, 5 Aug 2024 DOI: 10.1038/s41467-024-50638-w Link to full text
Abstract: Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
97.

Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae.

blue EL222 S. cerevisiae Endogenous gene expression
bioRxiv, 3 Aug 2024 DOI: 10.1101/2024.08.02.605841 Link to full text
Abstract: Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionality they can deliver and biological questions that can be probed.
98.

Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement.

blue AsLOV2 mouse in vivo rat in vivo Transgene expression
Alcohol Clin Exp Res (Hoboken), 2 Aug 2024 DOI: 10.1111/acer.15412 Link to full text
Abstract: Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another.
99.

Reshaping tumor microenvironment by regulating local cytokines expression with a portable smart blue-light controlled device.

blue VVD P815 Transgene expression
Commun Biol, 29 Jul 2024 DOI: 10.1038/s42003-024-06566-y Link to full text
Abstract: Cytokines have attracted sustained attention due to their multi-functional cellular response in immunotherapy. However, their application was limited to their short half-time, narrow therapeutic window, and undesired side effects. To address this issue, we developed a portable smart blue-light controlled (PSLC) device based on optogenetic technology. By combining this PSLC device with blue-light controlled gene modules, we successfully achieved the targeted regulation of cytokine expression within the tumor microenvironment. To alter the tumor microenvironment of solid tumors, pro-inflammatory cytokines were selected as blue-light controlled molecules. The results show that blue-light effectively regulates the expression of pro-inflammatory cytokines both in vitro and in vivo. This strategy leads to enhanced and activated tumor-infiltrating immune cells, which facilitated to overcome the immunosuppressive microenvironment, resulting in significant tumor shrinkage in tumor-bearing mice. Hence, our study offers a unique strategy for cytokine therapy and a convenient device for animal studies in optogenetic immunotherapy.
100.

Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors.

blue cpLOV2 CRY2/CIB1 HEK293T HeLa Organelle manipulation
Adv Sci (Weinh), 29 Jul 2024 DOI: 10.1002/advs.202403026 Link to full text
Abstract: High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.
Submit a new publication to our database