Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 76 - 100 of 115 results
76.

Optogenetic inhibition of Gαq protein signaling reduces calcium oscillation stochasticity.

blue CRY2/CIB1 HEK293T Signaling cascade control Immediate control of second messengers
ACS Synth Biol, 24 May 2018 DOI: 10.1021/acssynbio.8b00065 Link to full text
Abstract: As fast terminators of G-protein coupled receptor (GPCR) signaling, regulators of G-protein signaling (RGS) serve critical roles in fine-tuning second messenger levels and, consequently, cellular responses to external stimuli. Here, we report the creation of an optogenetic RGS2 (opto-RGS2) that suppresses agonist-evoked calcium oscillations by the inactivation of Gαq protein. In this system, cryptochrome-mediated hetero-dimerization of the catalytic RGS2-box with its N-terminal amphipathic helix reconstitutes a functional membrane-localized complex that can dynamically suppress store-operated release of calcium. Engineered opto-RGS2 cell lines were used to establish the role of RGS2 as a key inhibitory feedback regulator of the stochasticity of the Gαq-mediated calcium spike timing. RGS2 reduced the stochasticity of carbachol-stimulated calcium oscillations, and the feedback inhibition was coupled to the global calcium elevation by calmodulin/RGS2 interactions. The identification of a critical negative feedback circuit exemplifies the utility of optogenetic approaches for interrogating RGS/GPCR biology and calcium encoding principles through temporally precise molecular gain-of-function.
77.

Bioprinting Living Biofilms through Optogenetic Manipulation.

blue red BlrP1 BphS P. aeruginosa Control of cell-cell / cell-material interactions Immediate control of second messengers Multichromatic
ACS Synth Biol, 18 Apr 2018 DOI: 10.1021/acssynbio.8b00003 Link to full text
Abstract: In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.
78.

Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

violet cPAC E. coli in vitro Immediate control of second messengers
J Biol Chem, 9 Apr 2018 DOI: 10.1074/jbc.ra118.002258 Link to full text
Abstract: Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl-cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in non-photosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleussp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibited a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells. tissues, and whole organisms with light across the visible spectrum and into near IR.
79.

Rewiring Calcium Signaling for Precise Transcriptional Reprogramming.

blue AsLOV2 LOVTRAP HEK293T HeLa Endogenous gene expression Immediate control of second messengers
ACS Synth Biol, 6 Mar 2018 DOI: 10.1021/acssynbio.7b00467 Link to full text
Abstract: Tools capable of modulating gene expression in living organisms are very useful for interrogating the gene regulatory network and controlling biological processes. The catalytically inactive CRISPR/Cas9 (dCas9), when fused with repressive or activating effectors, functions as a versatile platform to reprogram gene transcription at targeted genomic loci. However, without temporal control, the application of these reprogramming tools will likely cause off-target effects and lack strict reversibility. To overcome this limitation, we report herein the development of a chemical or light-inducible transcriptional reprogramming device that combines photoswitchable genetically encoded calcium actuators with dCas9 to control gene expression. By fusing an engineered Ca2+-responsive NFAT fragment with dCas9 and transcriptional coactivators, we harness the power of light to achieve photoinducible transcriptional reprogramming in mammalian cells. This synthetic system (designated CaRROT) can also be used to document calcium-dependent activity in mammals after exposure to ligands or chemicals that would elicit calcium response inside cells.
80.

Optogenetics reprogramming of planktonic cells for biofilm formation.

red BphS P. aeruginosa Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions Immediate control of second messengers
bioRxiv, 4 Dec 2017 DOI: 10.1101/229229 Link to full text
Abstract: Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
81.

Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool.

blue bPAC (BlaC) NgPAC D. discoideum HEK293T Endogenous gene expression Developmental processes Immediate control of second messengers
Sci Rep, 21 Sep 2017 DOI: 10.1038/s41598-017-12162-4 Link to full text
Abstract: Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
82.

Optogenetic regulation of insulin secretion in pancreatic β-cells.

blue bPAC (BlaC) Beta-TC MIN6 murine pancreatic islet cells Control of vesicular transport Immediate control of second messengers
Sci Rep, 24 Aug 2017 DOI: 10.1038/s41598-017-09937-0 Link to full text
Abstract: Pancreatic β-cell insulin production is orchestrated by a complex circuitry involving intracellular elements including cyclic AMP (cAMP). Tackling aberrations in glucose-stimulated insulin release such as in diabetes with pharmacological agents, which boost the secretory capacity of β-cells, is linked to adverse side effects. We hypothesized that a photoactivatable adenylyl cyclase (PAC) can be employed to modulate cAMP in β-cells with light thereby enhancing insulin secretion. To that end, the PAC gene from Beggiatoa (bPAC) was delivered to β-cells. A cAMP increase was noted within 5 minutes of photostimulation and a significant drop at 12 minutes post-illumination. The concomitant augmented insulin secretion was comparable to that from β-cells treated with secretagogues. Greater insulin release was also observed over repeated cycles of photoinduction without adverse effects on viability and proliferation. Furthermore, the expression and activation of bPAC increased cAMP and insulin secretion in murine islets and in β-cell pseudoislets, which displayed a more pronounced light-triggered hormone secretion compared to that of β-cell monolayers. Calcium channel blocking curtailed the enhanced insulin response due to bPAC activity. This optogenetic system with modulation of cAMP and insulin release can be employed for the study of β-cell function and for enabling new therapeutic modalities for diabetes.
83.

Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging.

blue bPAC (BlaC) HeLa Immediate control of second messengers
Sci Rep, 4 Aug 2017 DOI: 10.1038/s41598-017-07820-6 Link to full text
Abstract: cAMP is a common second messenger that is involved in various physiological processes. To expand the colour palette of available cAMP indicators, we developed a red cAMP indicator named "Pink Flamindo" (Pink Fluorescent cAMP indicator). The fluorescence intensity of Pink Flamindo increases 4.2-fold in the presence of a saturating dose of cAMP, with excitation and emission peaks at 567 nm and 590 nm, respectively. Live-cell imaging revealed that Pink Flamindo is effective for monitoring the spatio-temporal dynamics of intracellular cAMP generated by photoactivated adenylyl cyclase in response to blue light, and in dual-colour imaging studies using a green Ca2+ indicator (G-GECO). Furthermore, we successfully monitored the elevation of cAMP levels in vivo in cerebral cortical astrocytes by two-photon imaging. We propose that Pink Flamindo will facilitate future in vivo, optogenetic studies of cell signalling and cAMP dynamics.
84.

Optogenetic protein clustering through fluorescent protein tagging and extension of CRY2.

blue CRY2/CRY2 CRY2clust CRY2olig HeLa Signaling cascade control Immediate control of second messengers
Nat Commun, 23 Jun 2017 DOI: 10.1038/s41467-017-00060-2 Link to full text
Abstract: Protein homo-oligomerization is an important molecular mechanism in many biological processes. Therefore, the ability to control protein homo-oligomerization allows the manipulation and interrogation of numerous cellular events. To achieve this, cryptochrome 2 (CRY2) from Arabidopsis thaliana has been recently utilized for blue light-dependent spatiotemporal control of protein homo-oligomerization. However, limited knowledge on molecular characteristics of CRY2 obscures its widespread applications. Here, we identify important determinants for efficient cryptochrome 2 clustering and introduce a new CRY2 module, named ''CRY2clust'', to induce rapid and efficient homo-oligomerization of target proteins by employing diverse fluorescent proteins and an extremely short peptide. Furthermore, we demonstrate advancement and versatility of CRY2clust by comparing against previously reported optogenetic tools. Our work not only expands the optogenetic clustering toolbox but also provides a guideline for designing CRY2-based new optogenetic modules.Cryptochrome 2 (CRY2) from A. thaliana can be used to control light-dependent protein homo-oligomerization, but the molecular mechanism of CRY2 clustering is not known, limiting its application. Here the authors identify determinants of CRY2 clustering and engineer fusion partners to modulate clustering efficiency.
85.

Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

red BphS Hana3A HEK293A HeLa hMSCs mouse in vivo Neuro-2a Transgene expression Immediate control of second messengers
Sci Transl Med, 26 Apr 2017 DOI: 10.1126/scitranslmed.aal2298 Link to full text
Abstract: With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
86.

Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.

blue red BphS EB1 E. coli in vitro Immediate control of second messengers Multichromatic
J Bacteriol, 20 Mar 2017 DOI: 10.1128/jb.00014-17 Link to full text
Abstract: Many aspects of bacterial physiology and behavior including motility, surface attachment, and cell cycle, are controlled by the c-di-GMP-dependent signaling pathways on the scale of seconds-to-minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing expression of genes encoding c-di-GMP synthetic (diguanylate cyclases) and degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared light-regulated diguanylate cyclase, BphS, has been engineered earlier, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue light-activated phosphodiesterase, EB1, can be used in combination with the red/near-infrared light-regulated diguanylate cyclase, BphS, for bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility, attachment to surfaces, cell cycle, and other bacterial processes controlled by the c-di-GMP signaling pathways occurs at a fast (seconds-to-minutes) pace. Interrogating these processes at high temporal and spatial resolution using chemicals is difficult-to-impossible, while optogenetic approaches may prove useful. We identified and characterized a robust, blue light-activated c-di-GMP phosphodiesterase (hydrolase) that complements a previously engineered red/near-infrared light-regulated diguanylate cyclase (c-di-GMP synthase). These two enzymes form a dichromatic module for manipulating intracellular c-di-GMP levels in bacterial and nonbacterial cells.
87.

Optogenetic manipulation of c-di-GMP levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense.

blue red BphS EB1 A. brasilense Immediate control of second messengers Multichromatic
J Bacteriol, 6 Mar 2017 DOI: 10.1128/jb.00020-17 Link to full text
Abstract: Bacterial chemotaxis receptors provide the sensory inputs that inform the direction of navigation in changing environments. Recently, we described the bacterial second messenger, c-di-GMP, as a novel regulator of a subclass of chemotaxis receptors. In Azospirillum brasilense, c-di-GMP binds to a chemotaxis receptor, Tlp1, and modulates its signaling function during aerotaxis. Here, we further characterize the role of c-di-GMP in aerotaxis using a novel dichromatic optogenetic system engineered for manipulating intracellular c-di-GMP levels in real time. This system comprises a red/near-infrared light-regulated diguanylate cyclase and a blue-light regulated c-di-GMP phosphodiesterase. It allows generation of transient changes in intracellular c-di-GMP concentrations within seconds of irradiation with appropriate light, which is compatible with the timescale of chemotaxis signaling. We provide experimental evidence that c-di-GMP binding to the Tlp1 receptor activates its signaling function during aerotaxis, which supports the role of transient changes in c-di-GMP levels as a means of adjusting the response of A. brasilense to oxygen gradients. We also show that intracellular c-di-GMP levels in A. brasilense changes with carbon metabolism. Our data support a model whereby c-di-GMP functions to imprint chemotaxis receptors with a record of recent metabolic experience, to adjust their contribution to the signaling output, thus allowing the cells to continually fine-tune chemotaxis sensory perception to their metabolic state.IMPORTANCE Motile bacteria use chemotaxis to change swimming direction in response to changes in environmental conditions. Chemotaxis receptors sense environmental signals and relay sensory information to the chemotaxis machinery, which ultimately controls the swimming pattern of cells. In bacteria studied to date, differential methylation has been known as a mechanism to control the activity of chemotaxis receptors and modulates their contribution to the overall chemotaxis response. Here, we used an optogenetic system to perturb intracellular concentrations of the bacterial second messenger, c-di-GMP, to show that in some chemotaxis receptors, c-di-GMP functions in a similar feedback loop to connect metabolic status of the cells to sensory activity of chemotaxis receptors.
88.

Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading.

blue bPAC (BlaC) C. elegans in vivo Immediate control of second messengers Neuronal activity control
Curr Biol, 2 Feb 2017 DOI: 10.1016/j.cub.2016.12.055 Link to full text
Abstract: Cyclic AMP (cAMP) signaling augments synaptic transmission, but because many targets of cAMP and protein kinase A (PKA) may be involved, mechanisms underlying this pathway remain unclear. To probe this mechanism, we used optogenetic stimulation of cAMP signaling by Beggiatoa-photoactivated adenylyl cyclase (bPAC) in Caenorhabditis elegans motor neurons. Behavioral, electron microscopy (EM), and electrophysiology analyses revealed cAMP effects on both the rate and on quantal size of transmitter release and led to the identification of a neuropeptidergic pathway affecting quantal size. cAMP enhanced synaptic vesicle (SV) fusion by increasing mobilization and docking/priming. cAMP further evoked dense core vesicle (DCV) release of neuropeptides, in contrast to channelrhodopsin (ChR2) stimulation. cAMP-evoked DCV release required UNC-31/Ca(2+)-dependent activator protein for secretion (CAPS). Thus, DCVs accumulated in unc-31 mutant synapses. bPAC-induced neuropeptide signaling acts presynaptically to enhance vAChT-dependent SV loading with acetylcholine, thus causing increased miniature postsynaptic current amplitudes (mPSCs) and significantly enlarged SVs.
89.

Model-guided optogenetic study of PKA signaling in budding yeast.

blue bPAC (BlaC) S. cerevisiae Signaling cascade control Immediate control of second messengers
Mol Biol Cell, 9 Nov 2016 DOI: 10.1091/mbc.e16-06-0354 Link to full text
Abstract: In eukaryotes, protein kinase A (PKA) is a master regulator of cell proliferation and survival. The activity of PKA is subject to elaborate control and exhibits complex time dynamics. To probe the quantitative attributes of PKA dynamics in the yeast Saccharomyces cerevisiae, we developed an optogenetic strategy that uses a photoactivatable adenylate cyclase to achieve real-time regulation of cAMP and the PKA pathway. We capitalize on the precise and rapid control afforded by this optogenetic tool, together with quantitative computational modeling, to study the properties of feedback in the PKA signaling network and dissect the nonintuitive dynamic effects that ensue from perturbing its components. Our analyses reveal that negative feedback channeled through the Ras1/2 GTPase is delayed, pinpointing its time scale and its contribution to the dynamic features of the cAMP/PKA signaling network.
90.

Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems.

blue red Magnets PhyB/PIF6 Cos-7 HEK293 HeLa Immediate control of second messengers
Sci Rep, 21 Oct 2016 DOI: 10.1038/srep35777 Link to full text
Abstract: Alpha subunits of heterotrimeric G proteins (Gα) are involved in a variety of cellular functions. Here we report an optogenetic strategy to spatially and temporally manipulate Gα in living cells. More specifically, we applied the blue light-induced dimerization system, known as the Magnet system, and an alternative red light-induced dimerization system consisting of Arabidopsis thaliana phytochrome B (PhyB) and phytochrome-interacting factor 6 (PIF6) to optically control the activation of two different classes of Gα (Gαq and Gαs). By utilizing this strategy, we demonstrate successful regulation of Ca(2+) and cAMP using light in mammalian cells. The present strategy is generally applicable to different kinds of Gα and could contribute to expanding possibilities of spatiotemporal regulation of Gα in mammalian cells.
91.

Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium.

blue bPAC (BlaC) euPAC OaPAC E. coli HEK293 in vitro rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Proc Natl Acad Sci USA, 31 May 2016 DOI: 10.1073/pnas.1517520113 Link to full text
Abstract: Cyclic-AMP is one of the most important second messengers, regulating many crucial cellular events in both prokaryotes and eukaryotes, and precise spatial and temporal control of cAMP levels by light shows great promise as a simple means of manipulating and studying numerous cell pathways and processes. The photoactivated adenylate cyclase (PAC) from the photosynthetic cyanobacterium Oscillatoria acuminata (OaPAC) is a small homodimer eminently suitable for this task, requiring only a simple flavin chromophore within a blue light using flavin (BLUF) domain. These domains, one of the most studied types of biological photoreceptor, respond to blue light and either regulate the activity of an attached enzyme domain or change its affinity for a repressor protein. BLUF domains were discovered through studies of photo-induced movements of Euglena gracilis, a unicellular flagellate, and gene expression in the purple bacterium Rhodobacter sphaeroides, but the precise details of light activation remain unknown. Here, we describe crystal structures and the light regulation mechanism of the previously undescribed OaPAC, showing a central coiled coil transmits changes from the light-sensing domains to the active sites with minimal structural rearrangement. Site-directed mutants show residues essential for signal transduction over 45 Å across the protein. The use of the protein in living human cells is demonstrated with cAMP-dependent luciferase, showing a rapid and stable response to light over many hours and activation cycles. The structures determined in this study will assist future efforts to create artificial light-regulated control modules as part of a general optogenetic toolkit.
92.

Near-infrared photoactivatable control of Ca(2+) signaling and optogenetic immunomodulation.

blue AsLOV2 HEK293 HEK293T HeLa mouse in vivo mouse T cells Signaling cascade control Immediate control of second messengers
Elife, 8 Dec 2015 DOI: 10.7554/elife.10024 Link to full text
Abstract: The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca(2+) oscillations and Ca(2+)-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca(2+)-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded 'photoactivatable adjuvant' to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote and wireless control of Ca(2+)-modulated activities with tailored function.
93.

Optogenetic control of endogenous Ca(2+) channels in vivo.

blue AsLOV2 CRY2/CRY2 Cos-7 HEK293 HeLa hESCs HUVEC mouse astrocytes mouse hippocampal slices mouse in vivo NIH/3T3 primary mouse hippocampal neurons zebrafish in vivo Immediate control of second messengers
Nat Biotechnol, 14 Sep 2015 DOI: 10.1038/nbt.3350 Link to full text
Abstract: Calcium (Ca(2+)) signals that are precisely modulated in space and time mediate a myriad of cellular processes, including contraction, excitation, growth, differentiation and apoptosis. However, study of Ca(2+) responses has been hampered by technological limitations of existing Ca(2+)-modulating tools. Here we present OptoSTIM1, an optogenetic tool for manipulating intracellular Ca(2+) levels through activation of Ca(2+)-selective endogenous Ca(2+) release-activated Ca(2+) (CRAC) channels. Using OptoSTIM1, which combines a plant photoreceptor and the CRAC channel regulator STIM1 (ref. 4), we quantitatively and qualitatively controlled intracellular Ca(2+) levels in various biological systems, including zebrafish embryos and human embryonic stem cells. We demonstrate that activating OptoSTIM1 in the CA1 hippocampal region of mice selectively reinforced contextual memory formation. The broad utility of OptoSTIM1 will expand our mechanistic understanding of numerous Ca(2+)-associated processes and facilitate screening for drug candidates that antagonize Ca(2+) signals.
94.

Light generation of intracellular Ca(2+) signals by a genetically encoded protein BACCS.

blue AsLOV2 Cos-7 HEK293 HEK293T HIT-T15 primary mouse hippocampal neurons Schneider 2 Immediate control of second messengers
Nat Commun, 18 Aug 2015 DOI: 10.1038/ncomms9021 Link to full text
Abstract: Ca(2+) signals are highly regulated in a spatiotemporal manner in numerous cellular physiological events. Here we report a genetically engineered blue light-activated Ca(2+) channel switch (BACCS), as an optogenetic tool for generating Ca(2+) signals. BACCS opens Ca(2+)-selective ORAI ion channels in response to light. A BACCS variant, dmBACCS2, combined with Drosophila Orai, elevates the Ca(2+) concentration more rapidly, such that Ca(2+) elevation in mammalian cells is observed within 1 s on light exposure. Using BACCSs, we successfully control cellular events including NFAT-mediated gene expression. In the mouse olfactory system, BACCS mediates light-dependent electrophysiological responses. Furthermore, we generate BACCS mutants, which exhibit fast and slow recovery of intracellular Ca(2+). Thus, BACCSs are a useful optogenetic tool for generating temporally various intracellular Ca(2+) signals with a large dynamic range, and will be applicable to both in vitro and in vivo studies.
95.

The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.

blue bPAC (BlaC) CHO-K1 rat hippocampal neurons Xenopus oocytes Immediate control of second messengers
Sci Signal, 11 Aug 2015 DOI: 10.1126/scisignal.aab0611 Link to full text
Abstract: Blastocladiomycota fungi form motile zoospores that are guided by sensory photoreceptors to areas of optimal light conditions. We showed that the microbial rhodopsin of Blastocladiella emersonii is a rhodopsin-guanylyl cyclase (RhGC), a member of a previously uncharacterized rhodopsin class of light-activated enzymes that generate the second messenger cyclic guanosine monophosphate (cGMP). Upon application of a short light flash, recombinant RhGC converted within 8 ms into a signaling state with blue-shifted absorption from which the dark state recovered within 100 ms. When expressed in Xenopus oocytes, Chinese hamster ovary cells, or mammalian neurons, RhGC generated cGMP in response to green light in a light dose-dependent manner on a subsecond time scale. Thus, we propose RhGC as a versatile tool for the optogenetic analysis of cGMP-dependent signaling processes in cell biology and the neurosciences.
96.

Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool.

blue bPAC (BlaC) zebrafish in vivo Immediate control of second messengers
Endocrinology, 1 Jul 2015 DOI: 10.1210/en.2015-1021 Link to full text
Abstract: Zebrafish offer an opportunity to study conserved mechanisms underlying the ontogeny and physiology of the hypothalamic-pituitary-adrenal/interrenal axis. As the final effector of the hypothalamic-pituitary-adrenal/interrenal axis, glucocorticoids exert both rapid and long-term regulatory functions. To elucidate their specific effects in zebrafish, transgenic approaches are necessary to complement pharmacological studies. Here, we report a robust approach to specifically manipulate endogenous concentrations of cortisol by targeting heterologous proteins to interrenal cells using a promoter element of the steroidogenic acute regulatory protein. To test this approach, we first used this regulatory region to generate a transgenic line expressing the bacterial nitroreductase protein, which allows conditional targeted ablation of interrenal cells. We demonstrate that this line can be used to specifically ablate interrenal cells, drastically reducing both basal and stress-induced cortisol concentrations. Next, we coupled this regulatory region to an optogenetic actuator, Beggiatoa photoactivated adenylyl cyclase, to increase endogenous cortisol concentrations in a blue light-dependent manner. Thus, our approach allows specific manipulations of steroidogenic interrenal cell activity for studying the effects of both hypo- and hypercortisolemia in zebrafish.
97.

A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection.

blue BlgC HEK293T rat in vivo Immediate control of second messengers
Angew Chem Int Ed Engl, 18 Mar 2015 DOI: 10.1002/anie.201412204 Link to full text
Abstract: Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene- and cell-based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue-light-inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue-light-dependent penile erection associated with occasional ejaculation after illumination of EROS-transfected corpus cavernosum in male rats. Photostimulated short-circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction.
98.

Controlling fertilization and cAMP signaling in sperm by optogenetics.

blue bPAC (BlaC) mouse in vivo mouse sperm cells Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 20 Jan 2015 DOI: 10.7554/elife.05161 Link to full text
Abstract: Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.
99.

Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.

red BphG HEK293F HEK293T hMSCs mouse in vivo Immediate control of second messengers
Nat Commun, 11 Nov 2014 DOI: 10.1038/ncomms6392 Link to full text
Abstract: Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.
100.

A cyanobacterial light activated adenylyl cyclase partially restores development of a Dictyostelium discoideum, adenylyl cyclase a null mutant.

blue mPAC D. discoideum Developmental processes Immediate control of second messengers
J Biotechnol, 14 Aug 2014 DOI: 10.1016/j.jbiotec.2014.08.008 Link to full text
Abstract: A light-regulated adenylyl cyclase, mPAC, was previously identified from the cyanobacterium Microcoleus chthonoplastes PCC7420. MPAC consists of a flavin-based blue light-sensing LOV domain and a catalytic domain. In this work, we expressed mPAC in an adenylate cyclase A null mutant (aca-) of the eukaryote Dictyostelium discoideum and tested to what extent light activation of mPAC could restore the cAMP-dependent developmental programme of this organism. Amoebas of Dictyostelium, a well-established model organism, generate and respond to cAMP pulses, which cause them to aggregate and construct fruiting bodies. mPAC was expressed under control of a constitutive actin-15 promoter in D. discoideum and displayed low basal adenylyl cyclase activity in darkness that was about five-fold stimulated by blue light. mPAC expression in aca- cells marginally restored aggregation and fruiting body formation in darkness. However, more and larger fruiting bodies were formed when mPAC expressing cells were incubated in light. Extending former applications of light-regulated AC, these results demonstrate that mPAC can be used to manipulate multicellular development in eukaryotes in a light dependent manner.
Submit a new publication to our database