Showing 76 - 100 of 1813 results
76.
Optogenetic control of a horizontally acquired region in yeast prevent stuck fermentations.
-
Figueroa, D
-
Ruiz, D
-
Tellini, N
-
De Chiara, M
-
Kessi-Pérez, EI
-
Martínez, C
-
Liti, G
-
Querol, A
-
Guillamón, JM
-
Salinas, F
Abstract:
Nitrogen limitations in the grape must is the main cause of stuck fermentations during the winemaking process. In Saccharomyces cerevisiae, a genetic segment known as region A, which harbors 12 protein-coding genes, was acquired horizontally from a phylogenetically distant yeast species. This region is mainly present in the genome of wine yeast strains, carrying genes that have been associated with nitrogen utilization. Despite the putative importance of region A in yeast fermentation, its contribution to the fermentative process is largely unknown. In this work, we used a wine yeast strain to evaluate the contribution of region A to the fermentation process. To do this, we first sequenced the genome of the wine yeast strain known as ‘ALL’ using long-read sequencing and determined that region A is present in a single copy with two possible subtelomeric locations. We then implemented an optogenetic system in this wine yeast strain to precisely regulate the expression of each gene inside this region, generating a collection of 12 strains that allow for light- activated gene expression. To evaluate the role of these genes during fermentation, we assayed this collection using microculture and fermentation experiments in synthetic must with varying amounts of nitrogen concentration. Our results show that changes in gene expression for genes within this region can impact growth parameters and fermentation rate. We additionally found that the expression of various genes in region A is necessary to complete the fermentation process and prevent stuck fermentations under low nitrogen conditions. Altogether, our optogenetics-based approach demonstrates the importance of region A in completing fermentation under nitrogen-limited conditions.
77.
Optogenetics in pancreatic islets: Actuators and effects.
Abstract:
The Islets of Langerhans reside within the endocrine pancreas as highly vascularised micro-organs that are responsible for the secretion of key hormones, such as insulin and glucagon. Islet function relies on a range of dynamic molecular processes that include calcium (Ca2+) waves, hormone pulses, and complex interactions between islet cell types. Dysfunction of these processes results in poor maintenance of blood glucose homeostasis and is a hallmark of diabetes. Very recently, the development of optogenetic methods that rely on light-sensitive molecular actuators has allowed perturbing islet function with near physiological spatio-temporal acuity. These actuators harness natural photoreceptor proteins and their engineered variants to manipulate mouse and human cells that are not normally light-responsive. Until recently, optogenetics in islet biology has primarily focused on hormone production and secretion; however, studies on further aspects of islet function, including paracrine regulation between islet cell types and dynamics within intracellular signaling pathways are emerging. Here, we discuss the applicability of optogenetics to islets cells and comprehensively review seminal as well as recent work on optogenetic actuators and their effects in islet function and diabetes mellitus (DM).
78.
Endoplasmic reticulum exit sites are segregated for secretion based on cargo size.
Abstract:
TANGO1, TANGO1-Short, and cTAGE5 form stable complexes at the endoplasmic reticulum exit sites (ERES) to preferably export bulky cargoes. Their C-terminal proline-rich domain (PRD) binds Sec23A and affects COPII assembly. The PRD in TANGO1-Short was replaced with light-responsive domains to control its binding to Sec23A in U2OS cells (human osteosarcoma). TANGO1-ShortΔPRD was dispersed in the ER membrane but relocated rapidly, reversibly, to pre-existing ERES by binding to Sec23A upon light activation. Prolonged binding between the two, concentrated ERES in the juxtanuclear region, blocked cargo export and relocated ERGIC53 into the ER, minimally impacting the Golgi complex organization. Bulky collagen VII and endogenous collagen I were collected at less than 47% of the stalled ERES, whereas small cargo molecules were retained uniformly at almost all the ERES. We suggest that ERES are segregated to handle cargoes based on their size, permitting cells to traffic them simultaneously for optimal secretion.
79.
Phospholipase C beta 1 in the dentate gyrus gates fear memory formation through regulation of neuronal excitability.
-
Lee, J
-
Jeong, Y
-
Park, S
-
Kim, S
-
Oh, H
-
Jin, JA
-
Sohn, JW
-
Kim, D
-
Shin, HS
-
Do Heo, W
Abstract:
Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCβ1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCβ1 in memory function has not been elucidated. Here, we demonstrate that PLCβ1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCβ1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCβ1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCβ1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCβ1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.
80.
Light-Inducible Activation of TrkA for Probing Chronic Pain in Mice.
Abstract:
Chronic pain is a prevalent problem that plagues modern society, and better understanding its mechanisms is critical for developing effective therapeutics. Nerve growth factor (NGF) and its primary receptor, Tropomyosin receptor kinase A (TrkA), are known to be potent mediators of chronic pain, but there is a lack of established methods for precisely perturbing the NGF/TrkA signaling pathway in the study of pain and nociception. Optobiological tools that leverage light-induced protein-protein interactions allow for precise spatial and temporal control of receptor signaling. Previously, our lab reported a blue light-activated version of TrkA generated using light-induced dimerization of the intracellular TrkA domain, opto-iTrkA. In this work, we show that opto-iTrkA activation is able to activate endogenous ERK and Akt signaling pathways and causes the retrograde transduction of phospho-ERK signals in dorsal root ganglion (DRG) neurons. Opto-iTrkA activation also sensitizes the transient receptor potential vanilloid 1 (TRPV1) channel in cellular models, further corroborating the physiological relevance of the optobiological stimulus. Finally, we show that opto-iTrkA enables light-inducible potentiation of mechanical sensitization in mice. Light illumination enables nontraumatic and reversible (<2 days) sensitization of mechanical pain in mice transduced with opto-iTrkA, which provides a platform for dissecting TrkA pathways for nociception in vitro and in vivo.
81.
Traveling wave chemotaxis of neutrophil-like HL-60 cells.
Abstract:
The question of how changes in chemoattractant concentration translate into the chemotactic response of immune cells serves as a paradigm for the quantitative understanding of how cells perceive and process temporal and spatial information. Here, using a microfluidic approach, we analyzed the migration of neutrophil-like HL-60 cells to a traveling wave of the chemoattractants fMLP and leukotriene B4 (LTB4). We found that under a pulsatile wave that travels at a speed of 95 and 170 µm/min, cells move forward in the front of the wave but slow down and randomly orient at the back due to temporal decrease in the attractant concentration. Under a slower wave, cells re-orient and migrate at the back of the wave; thus, cell displacement is canceled out or even becomes negative as cells chase the receding wave. FRET-based analysis indicated that these patterns of movement correlated well with spatiotemporal changes in Cdc42 activity. Furthermore, pharmacological perturbations suggested that migration in front of the wave depends on Cdc42, whereas that in the back of the wave depends more on PI3K/Rac and ROCK. These results suggest that pulsatile attractant waves may recruit or disperse neutrophils, depending on their speed and degree of cell polarization.
82.
Activation of NF-κB signaling by optogenetic clustering of IKKα and β.
Abstract:
A large percentage of proteins form higher-order structures in order to fulfill their function. These structures are crucial for the precise spatial and temporal regulation of the cellular signaling network. Investigation of this network requires sophisticated research tools, such as optogenetic tools, that allow dynamic control over the signaling molecules. Cryptochrome 2 and its variations are the best-characterized oligomerizing photoreceptors the optogenetics toolbox has to offer. Therefore, we utilized this switch and combined it with an eGFP-binding nanobody, to build a toolbox of optogenetic constructs that enables the oligomerization of any eGFP-tagged protein of interest. We further introduced the higher clustering variant Cry2olig and an intrinsically disordered region to create higher-order oligomers or phase-separated assemblies to investigate the impact of different oligomerization states on eGFP-tagged signaling molecules. We apply these constructs to cluster IKKα and IKKβ, which resemble the central signaling integrator of the NF-κB pathway, thereby engineer a potent, blue-light-inducible activator of NF-κB signaling.
83.
Illuminating morphogen and patterning dynamics with optogenetic control of morphogen production.
Abstract:
Cells use dynamic spatial and temporal cues to instruct cell fate decisions during development. Morphogens are key examples, where the concentration and duration of morphogen exposure produce distinct cell fates that drive tissue patterning. Studying the dynamics of these processes has been challenging. Here, we establish an optogenetic system for morphogen production that enables the investigation of developmental patterning in vitro. Using a tunable light-inducible gene expression system, we generate long-range Shh gradients that pattern neural progenitors into spatially distinct progenitor domains mimicking the spatial arrangement of neural progenitors found in vivo during vertebrate neural tube development. With this system, we investigate how biochemical features of Shh and the presence of morphogen-interacting proteins affect the patterning length scale. We measure tissue clearance rates, revealing that Shh has an extracellular half-life of about 1h, and we probe how the level and duration of morphogen exposure govern the acquisition and maintenance of cell fates. The rate of Shh turnover is substantially faster than the downstream gene expression dynamics, indicating that the gradient is continually renewed during patterning. Together the optogenetic approach establishes a simple experimental system for the quantitative interrogation of morphogen patterning. Controlling morphogen dynamics in a reproducible manner provides a framework to dissect the interplay between biochemical cues, the biophysics of gradient formation, and the transcriptional programmes underlying developmental patterning.
84.
OptoLacI: optogenetically engineered lactose operon repressor LacI responsive to light instead of IPTG.
Abstract:
Optogenetics' advancement has made light induction attractive for controlling biological processes due to its advantages of fine-tunability, reversibility, and low toxicity. The lactose operon induction system, commonly used in Escherichia coli, relies on the binding of lactose or isopropyl β-d-1-thiogalactopyranoside (IPTG) to the lactose repressor protein LacI, playing a pivotal role in controlling the lactose operon. Here, we harnessed the light-responsive light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as a tool for light control and engineered LacI into two light-responsive variants, OptoLacIL and OptoLacID. These variants exhibit direct responsiveness to light and darkness, respectively, eliminating the need for IPTG. Building upon OptoLacI, we constructed two light-controlled E. coli gene expression systems, OptoE.coliLight system and OptoE.coliDark system. These systems enable bifunctional gene expression regulation in E. coli through light manipulation and show superior controllability compared to IPTG-induced systems. We applied the OptoE.coliDark system to protein production and metabolic flux control. Protein production levels are comparable to those induced by IPTG. Notably, the titers of dark-induced production of 1,3-propanediol (1,3-PDO) and ergothioneine exceeded 110% and 60% of those induced by IPTG, respectively. The development of OptoLacI will contribute to the advancement of the field of optogenetic protein engineering, holding substantial potential applications across various fields.
85.
The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila.
-
Çoban, B
-
Poppinga, H
-
Rachad, EY
-
Geurten, B
-
Vasmer, D
-
Rodriguez Jimenez, FJ
-
Gadgil, Y
-
Deimel, SH
-
Alyagor, I
-
Schuldiner, O
-
Grunwald Kadow, IC
-
Riemensperger, TD
-
Widmann, A
-
Fiala, A
Abstract:
Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
86.
Leveraging the histidine kinase-phosphatase duality to sculpt two-component signaling.
Abstract:
Bacteria must constantly probe their environment for rapid adaptation, a crucial need most frequently served by two-component systems (TCS). As one component, sensor histidine kinases (SHK) control the phosphorylation of the second component, the response regulator (RR). Downstream responses hinge on RR phosphorylation and can be highly stringent, acute, and sensitive because SHKs commonly exert both kinase and phosphatase activity. With a bacteriophytochrome TCS as a paradigm, we here interrogate how this catalytic duality underlies signal responses. Derivative systems exhibit tenfold higher red-light sensitivity, owing to an altered kinase-phosphatase balance. Modifications of the linker intervening the SHK sensor and catalytic entities likewise tilt this balance and provide TCSs with inverted output that increases under red light. These TCSs expand synthetic biology and showcase how deliberate perturbations of the kinase-phosphatase duality unlock altered signal-response regimes. Arguably, these aspects equally pertain to the engineering and the natural evolution of TCSs.
87.
Exploring plant-derived phytochrome chaperone proteins for light-switchable transcriptional regulation in mammals.
-
Kong, D
-
Zhou, Y
-
Wei, Y
-
Wang, X
-
Huang, Q
-
Gao, X
-
Wan, H
-
Liu, M
-
Kang, L
-
Yu, G
-
Yin, J
-
Guan, N
-
Ye, H
Abstract:
Synthetic biology applications require finely tuned gene expression, often mediated by synthetic transcription factors (sTFs) compatible with the human genome and transcriptional regulation mechanisms. While various DNA-binding and activation domains have been developed for different applications, advanced artificially controllable sTFs with improved regulatory capabilities are required for increasingly sophisticated applications. Here, in mammalian cells and mice, we validate the transactivator function and homo-/heterodimerization activity of the plant-derived phytochrome chaperone proteins, FHY1 and FHL. Our results demonstrate that FHY1/FHL form a photosensing transcriptional regulation complex (PTRC) through interaction with the phytochrome, ΔPhyA, that can toggle between active and inactive states through exposure to red or far-red light, respectively. Exploiting this capability, we develop a light-switchable platform that allows for orthogonal, modular, and tunable control of gene transcription, and incorporate it into a PTRC-controlled CRISPRa system (PTRCdcas) to modulate endogenous gene expression. We then integrate the PTRC with small molecule- or blue light-inducible regulatory modules to construct a variety of highly tunable systems that allow rapid and reversible control of transcriptional regulation in vitro and in vivo. Validation and deployment of these plant-derived phytochrome chaperone proteins in a PTRC platform have produced a versatile, powerful tool for advanced research and biomedical engineering applications.
88.
TORC1 reactivation by pheromone signaling revealed by phosphoproteomics of fission yeast sexual reproduction.
Abstract:
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic datasets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these datasets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
89.
OPTICS: An interactive online platform for photosensory and bio-functional proteins in optogenetic systems.
Abstract:
High-precise modulation of bio-functional proteins related to signaling is crucial in life sciences and human health. The cutting-edge technology of optogenetics, which combines optical method with genetically encoded protein expression, pioneered new pathways for the control of cellular bio-functional proteins (CPs) using optogenetic tools (OTs) in spatial and temporal. Over the past decade, hundreds of optogenetic systems (OSs) have been developed for various applications from living cells to freely moving organisms. However, no database has been constructed to comprehensively provide the valuable information of OSs yet. In this work, a new database named OPTICS (an interactive online platform for photosensory and bio-functional proteins in optogenetic systems) is introduced. Our OPTICS is unique in (i) systematically describing diverse OSs from the perspective of photoreceptor-based classification and mechanism of action, (ii) featuring the detailed biophysical properties and functional data of OSs, (iii) providing the interaction between OT and CP for each OS referring to distinct applications in research, diagnosis, and therapy, and (iv) enabling a light response property-based search against all OSs in the database. Since the information on OSs is essential for rapid and predictable design of optogenetic controls, the comprehensive data provided in OPTICS lay a solid foundation for the future development of novel OSs. OPTICS is freely accessible without login requirement at https://idrblab.org/optics/.
90.
AGS3-based optogenetic GDI induces GPCR-independent Gβγ signaling and macrophage migration.
Abstract:
G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gβγ and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3’s G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gβγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gβγ signaling in cells and in vivo.
91.
Optogenetic inhibition of light-captured alcohol-taking striatal engrams facilitates extinction and suppresses reinstatement.
Abstract:
Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another.
92.
Optogenetic therapeutic strategies for diabetes mellitus.
Abstract:
Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
93.
Red light responsive Cre recombinase for bacterial optogenetics.
Abstract:
Optogenetic tools have been used in a wide range of microbial engineering applications that benefit from the tunable, spatiotemporal control that light affords. However, the majority of current optogenetic constructs for bacteria respond to blue light, limiting the potential for multichromatic control. In addition, other wavelengths offer potential benefits over blue light, including improved penetration of dense cultures and reduced potential for toxicity. In this study, we introduce OptoCre-REDMAP, a red light inducible Cre recombinase system in Escherichia coli. This system harnesses the plant photoreceptors PhyA and FHY1 and a split version of Cre recombinase to achieve precise control over gene expression and DNA excision in bacteria. We optimized the design by modifying the start codon of Cre and characterized the impact of different levels of induction to find conditions that produced minimal basal expression in the dark and full activation within four hours of red light exposure. We characterized the system’s sensitivity to ambient light, red light intensity, and exposure time, finding OptoCre-REDMAP to be reliable and flexible across a range of conditions. The system exhibits robust light-sensitive behavior, responding to red light while remaining inactive under blue light, making it suitable for future applications in synthetic biology that require multichromatic control.
94.
Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors.
Abstract:
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
95.
Photoresponsive Hydrogels for Tissue Engineering.
Abstract:
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
96.
Spatiotemporal Control of Inflammatory Lytic Cell Death Through Optogenetic Induction of RIPK3 Oligomerization.
Abstract:
Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.
97.
Luminescent ingestible electronic capsules for in vivo regulation of optogenetic engineered bacteria.
-
Li, L
-
Feng, Z
-
Zhang, X
-
Li, M
-
Yang, H
-
Sun, D
-
Li, H
-
Xue, H
-
Wang, H
-
Wang, Y
-
Liu, L
-
Shi, Y
-
Liu, D
-
Du, T
-
Wang, H
Abstract:
The ideal engineered microbial smart-drug should be capable of functioning on demand at specific sites in vivo. However, precise regulation of engineered microorganisms poses challenges in the convoluted and elongated intestines. Despite the promising application potential of optogenetic regulation strategies based on light signals, the poor tissue penetration of light signals limits their application in large experimental animals. Given the rapid development of ingestible electronic capsules in recent years, taking advantage of them as regulatory devices to deliver light signals in situ to engineered bacteria within the intestines has become feasible. In this study, we established an electronic-microorganism signaling system, realized by two Bluetooth-controlled luminescent electronic capsules were designed. The “Manager” capsule is equipped with a photosensor to monitor the distribution of engineered bacteria and to activate the optogenetic function of the bacteria by emitting green light. The other capsule, “Locator”, can control the in situ photopolymerization of hydrogels in the intestines via ultraviolet light, aiding in the retention of engineered bacteria at specific sites. These two electronic capsules are expected to work synergistically to regulate the distribution and function of engineered bacteria in vivo, and their application in the treatment of colitis in pigs is currently being investigated, with relevant results to be updated subsequently.
98.
A modular strategy for extracellular vesicle-mediated CRISPR-Cas9 delivery through aptamer-based loading and UV-activated cargo release.
-
Elsharkasy, OM
-
Hegeman, CV
-
Lansweers, I
-
Cotugno, OL
-
de Groot, IY
-
de Wit, ZEMNJ
-
Liang, X
-
Garcia-Guerra, A
-
Moorman, NJA
-
Lefferts, J
-
de Voogt, WS
-
Gitz-Francois, JJ
-
van Wesel, ACW
-
El Andaloussi, S
-
Schiffelers, RM
-
Kooijmans, SAA
-
Mastrobattista, E
-
Vader, P
-
de Jong, OG
Abstract:
CRISPR-Cas9 gene editing technology offers the potential to permanently repair genes containing pathological mutations. However, efficient intracellular delivery of the Cas9 ribonucleoprotein complex remains one of the major hurdles in its therapeutic application. Extracellular vesicles (EVs) are biological nanosized membrane vesicles released by cells, that play an important role in intercellular communication. Due to their innate capability of intercellular transfer of proteins, RNA, and various other biological cargos, EVs have emerged as a novel promising strategy for the delivery of macromolecular biotherapeutics, including CRISPR-Cas9 ribonucleoproteins. Here, we present a versatile, modular strategy for the loading and delivery of Cas9. We leverage the high affinity binding of MS2 coat proteins (MCPs) fused to EV-enriched proteins to MS2 aptamers incorporated into single guide RNAs (sgRNAs), in combination with a UV-activated photocleavable linker domain, PhoCl. Combined with the Vesicular stomatitis virus G (VSV-G) protein this modular platform enables efficient loading and subsequent delivery of the Cas9 ribonucleoprotein complex, which shows critical dependence on the incorporation and activation of the photocleavable linker domain. As this approach does not require any direct fusion of Cas9 to EV-enriched proteins, we demonstrate that Cas9 can readily be exchanged for other variants, including transcriptional activator dCas9-VPR and adenine base editor ABE8e, as confirmed by various sensitive fluorescent reporter assays. Taken together, we describe a robust and modular strategy for successful Cas9 delivery, which can be applied for CRISPR-Cas9-based genetic engineering as well as transcriptional regulation, underlining the potential of EV-mediated strategies for the treatment of genetic diseases.
99.
Nano-optogenetics for Disease Therapies.
Abstract:
Optogenetic, known as the method of 21 centuries, combines optic and genetic engineering to precisely control photosensitive proteins for manipulation of a broad range of cellular functions, such as flux of ions, protein oligomerization and dissociation, cellular intercommunication, and so on. In this technique, light is conventionally delivered to targeted cells through optical fibers or micro light-emitting diodes, always suffering from high invasiveness, wide-field illumination facula, strong absorption, and scattering by nontargeted endogenous substance. Light-transducing nanomaterials with advantages of high spatiotemporal resolution, abundant wireless-excitation manners, and easy functionalization for recognition of specific cells, recently have been widely explored in the field of optogenetics; however, there remain a few challenges to restrain its clinical applications. This review summarized recent progress on light-responsive genetically encoded proteins and the myriad of activation strategies by use of light-transducing nanomaterials and their disease-treatment applications, which is expected for sparking helpful thought to push forward its preclinical and translational uses.
100.
Reversible Photoregulation of Cell-Cell Adhesions With Opto-E-cadherin.
Abstract:
The cell-cell adhesion molecule E-cadherin has been intensively studied due to its prevalence in tissue function and its spatiotemporal regulation during epithelial-to-mesenchymal cell transition. Nonetheless, regulating and studying the dynamics of it has proven challenging. We developed a photoswitchable version of E-cadherin, named opto-E-cadherin, which can be toggled OFF with blue light illumination and back ON in the dark. Herein, we describe easy-to-use methods to test and characterise opto-E- cadherin cell clones for downstream experiments. Key features • This protocol describes how to implement optogenetic cell-cell adhesion molecules effectively (described here on the basis of opto-E-cadherin), while highlighting possible pitfalls. • Utilises equipment commonly found in most laboratories with high ease of use. • Phenotype screening is easy and done within a few hours (comparison of cell clusters in the dark vs. blue light in an aggregation assay). • Three different functionality assay systems are described. • After the cell line is established, all experiments can be performed within three days.