Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: switch:"EL222"
Showing 76 - 100 of 190 results
76.

Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.

blue CRY2/CIB1 EL222 S. cerevisiae Transgene expression
Cell Syst, 14 Mar 2022 DOI: 10.1016/j.cels.2022.02.004 Link to full text
Abstract: Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
77.

Using single-cell models to predict the functionality of synthetic circuits at the population scale.

blue EL222 S. cerevisiae Transgene expression
Proc Natl Acad Sci U S A, 10 Mar 2022 DOI: 10.1073/pnas.2114438119 Link to full text
Abstract: SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models. Here we show how multiscale stochastic kinetic models that simultaneously track single-cell and population processes can be obtained based on an augmentation of the chemical master equation. These models enable us to quantitatively predict complex population dynamics of a yeast optogenetic differentiation system from a specification of the circuit's components and to demonstrate how cell-to-cell variability can be exploited to purposefully create unintuitive circuit functionality.
78.

Optogenetics Illuminates Applications in Microbial Engineering.

blue green red UV violet BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Annu Rev Chem Biomol Eng, 23 Feb 2022 DOI: 10.1146/annurev-chembioeng-092120-092340 Link to full text
Abstract: Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
79.

Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 18 Feb 2022 DOI: 10.1021/acssynbio.1c00387 Link to full text
Abstract: Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the first systematic study of in vivo maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.
80.

Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Int J Mol Sci, 3 Feb 2022 DOI: 10.3390/ijms23031737 Link to full text
Abstract: Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
81.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
82.

Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production.

blue green CcaS/CcaR EL222 RsLOV YtvA E. coli Transgene expression
Molecules, 18 Jan 2022 DOI: 10.3390/molecules27030617 Link to full text
Abstract: Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10-CcaS#10-CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10-CcaS#10-CcaR system was combined with a blue light-activated YF1-FixJ-PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
83.

Optogenetic approaches in biotechnology and biomaterials.

blue cyan green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 11 Jan 2022 DOI: 10.1016/j.tibtech.2021.12.007 Link to full text
Abstract: Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
84.

Design and Characterization of an Optogenetic System in Pichia pastoris.

blue EL222 P. pastoris Transgene expression
ACS Synth Biol, 7 Jan 2022 DOI: 10.1021/acssynbio.1c00422 Link to full text
Abstract: Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
85.

Toward Multiplexed Optogenetic Circuits.

blue green red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 5 Jan 2022 DOI: 10.3389/fbioe.2021.804563 Link to full text
Abstract: Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
86.

Optogenetics in bacteria - applications and opportunities.

blue green near-infrared red BLUF domains Cryptochromes LOV domains Phytochromes Review
FEMS Microbiol Rev, 13 Nov 2021 DOI: 10.1093/femsre/fuab055 Link to full text
Abstract: Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
87.

The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.

blue green near-infrared red UV violet BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Chem Rev, 20 Oct 2021 DOI: 10.1021/acs.chemrev.1c00194 Link to full text
Abstract: This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
88.

A light tunable differentiation system for the creation and control of consortia in yeast.

blue EL222 S. cerevisiae Transgene expression Cell differentiation
Nat Commun, 5 Oct 2021 DOI: 10.1038/s41467-021-26129-7 Link to full text
Abstract: Artificial microbial consortia seek to leverage division-of-labour to optimize function and possess immense potential for bioproduction. Co-culturing approaches, the preferred mode of generating a consortium, remain limited in their ability to give rise to stable consortia having finely tuned compositions. Here, we present an artificial differentiation system in budding yeast capable of generating stable microbial consortia with custom functionalities from a single strain at user-defined composition in space and in time based on optogenetically-driven genetic rewiring. Owing to fast, reproducible, and light-tunable dynamics, our system enables dynamic control of consortia composition in continuous cultures for extended periods. We further demonstrate that our system can be extended in a straightforward manner to give rise to consortia with multiple subpopulations. Our artificial differentiation strategy establishes a novel paradigm for the creation of complex microbial consortia that are simple to implement, precisely controllable, and versatile to use.
89.

Optogenetic strategies for the control of gene expression in yeasts.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 28 Sep 2021 DOI: 10.1016/j.biotechadv.2021.107839 Link to full text
Abstract: Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
90.

Rapid prototyping and design of cybergenetic single-cell controllers.

blue EL222 S. cerevisiae
Nat Commun, 24 Sep 2021 DOI: 10.1038/s41467-021-25754-6 Link to full text
Abstract: The design and implementation of synthetic circuits that operate robustly in the cellular context is fundamental for the advancement of synthetic biology. However, their practical implementation presents challenges due to low predictability of synthetic circuit design and time-intensive troubleshooting. Here, we present the Cyberloop, a testing framework to accelerate the design process and implementation of biomolecular controllers. Cellular fluorescence measurements are sent in real-time to a computer simulating candidate stochastic controllers, which in turn compute the control inputs and feed them back to the controlled cells via light stimulation. Applying this framework to yeast cells engineered with optogenetic tools, we examine and characterize different biomolecular controllers, test the impact of non-ideal circuit behaviors such as dilution on their operation, and qualitatively demonstrate improvements in controller function with certain network modifications. From this analysis, we derive conditions for desirable biomolecular controller performance, thereby avoiding pitfalls during its biological implementation.
91.

Light-Induced GFP Expression in Zebrafish Embryos using the Optogenetic TAEL/C120 System.

blue EL222 zebrafish in vivo
J Vis Exp, 19 Aug 2021 DOI: 10.3791/62818 Link to full text
Abstract: Inducible gene expression systems are an invaluable tool for studying biological processes. Optogenetic expression systems can provide precise control over gene expression timing, location, and amplitude using light as the inducing agent. In this protocol, an optogenetic expression system is used to achieve light-inducible gene expression in zebrafish embryos. This system relies on an engineered transcription factor called TAEL based on a naturally occurring light-activated transcription factor from the bacterium E. litoralis. When illuminated with blue light, TAEL dimerizes, binds to its cognate regulatory element called C120, and activates transcription. This protocol uses transgenic zebrafish embryos that express the TAEL transcription factor under the control of the ubiquitous ubb promoter. At the same time, the C120 regulatory element drives the expression of a fluorescent reporter gene (GFP). Using a simple LED panel to deliver activating blue light, induction of GFP expression can first be detected after 30 min of illumination and reaches a peak of more than 130-fold induction after 3 h of light treatment. Expression induction can be assessed by quantitative real-time PCR (qRT-PCR) and by fluorescence microscopy. This method is a versatile and easy-to-use approach for optogenetic gene expression.
92.

The Neurospora crassa Inducible Q System Enables Simultaneous Optogenetic Amplification and Inversion in Saccharomyces cerevisiae for Bidirectional Control of Gene Expression.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 4 Aug 2021 DOI: 10.1021/acssynbio.1c00229 Link to full text
Abstract: Bidirectional optogenetic control of yeast gene expression has great potential for biotechnological applications. Our group has developed optogenetic inverter circuits that activate transcription using darkness, as well as amplifier circuits that reach high expression levels under limited light. However, because both types of circuits harness Gal4p and Gal80p from the galactose (GAL) regulon they cannot be used simultaneously. Here, we apply the Q System, a transcriptional activator/inhibitor system from Neurospora crassa, to build circuits in Saccharomyces cerevisiae that are inducible using quinic acid, darkness, or blue light. We develop light-repressed OptoQ-INVRT circuits that initiate darkness-triggered transcription within an hour of induction, as well as light-activated OptoQ-AMP circuits that achieve up to 39-fold induction. The Q System does not exhibit crosstalk with the GAL regulon, allowing coutilization of OptoQ-AMP circuits with previously developed OptoINVRT circuits. As a demonstration of practical applications in metabolic engineering, we show how simultaneous use of these circuits can be used to dynamically control both growth and production to improve acetoin production, as well as enable light-tunable co-production of geraniol and linalool, two terpenoids implicated in the hoppy flavor of beer. OptoQ-AMP and OptoQ-INVRT circuits enable simultaneous optogenetic signal amplification and inversion, providing powerful additions to the yeast optogenetic toolkit.
93.

Clinical applicability of optogenetic gene regulation.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biotechnol Bioeng, 20 Jul 2021 DOI: 10.1002/bit.27895 Link to full text
Abstract: The field of optogenetics is rapidly growing in relevance and number of developed tools. Amongst other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications. This article is protected by copyright. All rights reserved.
94.

Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts.

blue EL222 S. cerevisiae
Biotechnol Biofuels, 17 Jul 2021 DOI: 10.1186/s13068-021-02008-7 Link to full text
Abstract: Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures.
95.

Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.

blue EL222 E. coli Signaling cascade control
Lancet Infect Dis, 5 Jul 2021 DOI: 10.1016/j.cej.2021.130842 Link to full text
Abstract: Engineered anaerobic bacteria known as live biotherapeutic products (LBPs) have shown great advances in cancer therapy. One advantage of anaerobic bacteria as drug carrier is that it spontaneously target to tumor and persistently release anti-tumor factors. To realize effective anti-cancer therapeutics, one essential premise is to improve the controllability of treatment. Here, we designed near-infrared (NIR)-light responsive bacteria as anti-tumor agent, which is based on a blue-light responsive module and upconversion nanoparticles. The upconversion nanoparticles converted external NIR light to local blue light to noninvasively activate blue-light responsive module (EL222) in engineered LBPs. The activated LBPs then produce tumor necrosis factor α (TNFα) for precise tumor ablation. In vitro and in vivo results have proven that this engineered NIR-light-responsive bacteria could efficiently inhibit tumor growth. We anticipate that this controllable and safe bacteria-based therapy can facilitate the application of LBPs to accurately and effectively regulate diseases.
96.

Transmission of light signals from the light-oxygen-voltage core via the hydrophobic region of the β-sheet surface in aureochrome-1.

blue LOV domains Background
Sci Rep, 7 Jun 2021 DOI: 10.1038/s41598-021-91497-5 Link to full text
Abstract: Light-Oxygen-Voltage (LOV) domains are responsible for detecting blue light (BL) and regulating the activities of effector domains in various organisms. Photozipper (PZ), an N-terminally truncated aureochrome-1 protein, contains a LOV domain and a basic leucin zipper (bZIP) domain and plays a role as a light-activatable transcription factor. PZ is monomeric in the dark state and undergoes non-covalent dimerization upon illumination with BL, subsequently increasing its affinity for the target DNA. To clarify the molecular mechanism of aureochromes, we prepared site-directed mutants of PZ and performed quantitative analyses in the dark and light states. Although the amino acid substitutions in the hinge region between the LOV core and A'α helix had minor effects on the dimerization and DNA-binding properties of PZ, the substitutions in the β-sheet region of the LOV core and in the A'α helix significantly affected these properties. We found that light signals are transmitted from the LOV core to the effector bZIP domain via the hydrophobic residues on the β-sheet. The light-induced conformational change possibly deforms the hydrophobic regions of the LOV core and induces the detachment of the A'α helix to expose the dimerization surface, likely activating the bZIP domain in a light-dependent manner.
97.

Synthetic biology as driver for the biologization of materials sciences.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Mater Today Bio, 26 May 2021 DOI: 10.1016/j.mtbio.2021.100115 Link to full text
Abstract: Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
98.

Optogenetic Amplification Circuits for Light-Induced Metabolic Control.

blue EL222 S. cerevisiae
ACS Synth Biol, 9 Apr 2021 DOI: 10.1021/acssynbio.0c00642 Link to full text
Abstract: Dynamic control of microbial metabolism is an effective strategy to improve chemical production in fermentations. While dynamic control is most often implemented using chemical inducers, optogenetics offers an attractive alternative due to the high tunability and reversibility afforded by light. However, a major concern of applying optogenetics in metabolic engineering is the risk of insufficient light penetration at high cell densities, especially in large bioreactors. Here, we present a new series of optogenetic circuits we call OptoAMP, which amplify the transcriptional response to blue light by as much as 23-fold compared to the basal circuit (OptoEXP). These circuits show as much as a 41-fold induction between dark and light conditions, efficient activation at light duty cycles as low as ∼1%, and strong homogeneous light-induction in bioreactors of at least 5 L, with limited illumination at cell densities above 40 OD600. We demonstrate the ability of OptoAMP circuits to control engineered metabolic pathways in novel three-phase fermentations using different light schedules to control enzyme expression and improve production of lactic acid, isobutanol, and naringenin. These circuits expand the applicability of optogenetics to metabolic engineering.
99.

Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors.

blue LOV domains Review
J Biol Chem, 26 Mar 2021 DOI: 10.1016/j.jbc.2021.100594 Link to full text
Abstract: The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue light sensing Light-Oxygen-Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis, leading to models where the domains have an extended linear arrangement, with the activating LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances which have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels.
100.

Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Annu Rev Biomed Eng, 15 Mar 2021 DOI: 10.1146/annurev-bioeng-083120-111648 Link to full text
Abstract: Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Submit a new publication to our database