Showing 951 - 975 of 1565 results
951.
Flotillins promote T cell receptor sorting through a fast Rab5-Rab11 endocytic recycling axis.
Abstract:
The targeted endocytic recycling of the T cell receptor (TCR) to the immunological synapse is essential for T cell activation. Despite this, the mechanisms that underlie the sorting of internalised receptors into recycling endosomes remain poorly understood. To build a comprehensive picture of TCR recycling during T cell activation, we developed a suite of new imaging and quantification tools centred on photoactivation of fluorescent proteins. We show that the membrane-organising proteins, flotillin-1 and -2, are required for TCR to reach Rab5-positive endosomes immediately after endocytosis and for transfer from Rab5- to Rab11a-positive compartments. We further observe that after sorting into in Rab11a-positive vesicles, TCR recycles to the plasma membrane independent of flotillin expression. Our data suggest a mechanism whereby flotillins delineate a fast Rab5-Rab11a endocytic recycling axis and functionally contribute to regulate the spatial organisation of these endosomes.
952.
Optogenetic Repressors of Gene Expression in Yeasts Using Light-Controlled Nuclear Localization.
Abstract:
Introduction: Controlling gene expression is a fundamental goal of basic and synthetic biology because it allows insight into cellular function and control of cellular activity. We explored the possibility of generating an optogenetic repressor of gene expression in the model organism Saccharomyces cerevisiae by using light to control the nuclear localization of nuclease-dead Cas9, dCas9. Methods: The dCas9 protein acts as a repressor for a gene of interest when localized to the nucleus in the presence of an appropriate guide RNA (sgRNA). We engineered dCas9, the mammalian transcriptional repressor Mxi1, and an optogenetic tool to control nuclear localization (LINuS) as parts in an existing yeast optogenetic toolkit. This allowed expression cassettes containing novel dCas9 repressor configurations and guide RNAs to be rapidly constructed and integrated into yeast. Results: Our library of repressors displays a range of basal repression without the need for inducers or promoter modification. Populations of cells containing these repressors can be combined to generate a heterogeneous population of yeast with a 100-fold expression range. We find that repression can be dialed modestly in a light dose- and intensity-dependent manner. We used this library to repress expression of the lanosterol 14-alpha-demethylase Erg11, generating yeast with a range of sensitivity to the important antifungal drug fluconazole. Conclusions: This toolkit will be useful for spatiotemporal perturbation of gene expression in Saccharomyces cerevisiae. Additionally, we believe that the simplicity of our scheme will allow these repressors to be easily modified to control gene expression in medically relevant fungi, such as pathogenic yeasts.
953.
Near-infrared optogenetic genome engineering based on photon upconversion hydrogels.
Abstract:
Photon upconversion (UC) from near-infrared (NIR) light to visible light has enabled optogenetic manipulations in deep tissues. However, materials for NIR optogenetics have been limited to inorganic UC nanoparticles. Extension to organic triplet-triplet annihilation (TTA)-based UC systems would innovate NIR optogenetics toward the use of biocompatible materials placed at a desired position. Here, we report the first example of NIR light-triggered optogenetics by using TTA-UC hydrogels. To achieve triplet sensitization even in the highly viscous hydrogel matrices, a NIR-absorbing complex is covalently linked with energy-pooling acceptor chromophores, which significantly elongates the donor triplet lifetime. The donor and acceptor are solubilized in hydrogels formed from biocompatible Pluronic F127 micelles, and we find that the additional heat treatment endows remarkable oxygen-tolerant property to the excited triplets in the hydrogel. Combined with photoactivatable Cre recombinase (PA-Cre) technology, NIR light stimulation successfully performs genome engineering such as hippocampal dendritic spine formation involved in learning and long-term memory.
954.
Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs.
-
Chen, X
-
Zhang, D
-
Su, N
-
Bao, B
-
Xie, X
-
Zuo, F
-
Yang, L
-
Wang, H
-
Jiang, L
-
Lin, Q
-
Fang, M
-
Li, N
-
Hua, X
-
Chen, Z
-
Bao, C
-
Xu, J
-
Du, W
-
Zhang, L
-
Zhao, Y
-
Zhu, L
-
Loscalzo, J
-
Yang, Y
Abstract:
Fluorescent RNAs (FRs), aptamers that bind and activate fluorescent dyes, have been used to image abundant cellular RNA species. However, limitations such as low brightness and limited availability of dye/aptamer combinations with different spectral characteristics have limited use of these tools in live mammalian cells and in vivo. Here, we develop Peppers, a series of monomeric, bright and stable FRs with a broad range of emission maxima spanning from cyan to red. Peppers allow simple and robust imaging of diverse RNA species in live cells with minimal perturbation of the target RNA's transcription, localization and translation. Quantification of the levels of proteins and their messenger RNAs in single cells suggests that translation is governed by normal enzyme kinetics but with marked heterogeneity. We further show that Peppers can be used for imaging genomic loci with CRISPR display, for real-time tracking of protein-RNA tethering, and for super-resolution imaging. We believe these FRs will be useful tools for live imaging of cellular RNAs.
955.
Amelioration of Diabetes in a Murine Model upon Transplantation of Pancreatic β-Cells with Optogenetic Control of Cyclic Adenosine Monophosphate.
Abstract:
Pharmacological augmentation of glucose-stimulated insulin secretion (GSIS), for example, to overcome insulin resistance in type 2 diabetes is linked to suboptimal regulation of blood sugar. Cultured β-cells and islets expressing a photoactivatable adenylyl cyclase (PAC) are amenable to GSIS potentiation with light. However, whether PAC-mediated enhancement of GSIS can improve the diabetic state remains unknown. To this end, β-cells were engineered with stable PAC expression that led to over 2-fold greater GSIS upon exposure to blue light while there were no changes in the absence of glucose. Moreover, the rate of oxygen consumption was unaltered despite the photoinduced elevation of GSIS. Transplantation of these cells into streptozotocin-treated mice resulted in improved glucose tolerance, lower hyperglycemia, and higher plasma insulin when subjected to illumination. Embedding optogenetic networks in β-cells for physiologically relevant control of GSIS will enable novel solutions potentially overcoming the shortcomings of current treatments for diabetes.
956.
FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics.
Abstract:
Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.
957.
Synthetic biology approaches for targeted protein degradation.
Abstract:
Protein degradation is an effective native mechanism used in modulating intracellular information, and thus it plays an essential role in maintaining cellular homeostasis. Repurposing native protein degradation in a synthetic context is gaining attention as a new strategy to manipulate cellular behavior rapidly for a wide range of applications including disease detection and therapy. This review examines the native mechanisms and machineries by which mammalian cells degrade their own proteins including the sequence of events from identifying a candidate for degradation to the protein's destruction. Next, it explores engineering efforts to degrade both exogenous and native proteins with high specificity and control by targeting proteins into the degradation cascade. A complete understanding of design rules with an ability to use cellular information as signals will allow control over the cellular behavior in a well-defined manner.
958.
A blue light receptor that mediates RNA binding and translational regulation.
-
Weber, AM
-
Kaiser, J
-
Ziegler, T
-
Pilsl, S
-
Renzl, C
-
Sixt, L
-
Pietruschka, G
-
Moniot, S
-
Kakoti, A
-
Juraschitz, M
-
Schrottke, S
-
Lledo Bryant, L
-
Steegborn, C
-
Bittl, R
-
Mayer, G
-
Möglich, A
Abstract:
Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.
959.
Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth.
Abstract:
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
960.
Signal transduction in photoreceptor histidine kinases.
Abstract:
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
961.
Synthetic Biology Tools for the Fast-Growing Marine Bacterium Vibrio natriegens.
-
Tschirhart, T
-
Shukla, V
-
Kelly, EE
-
Schultzhaus, Z
-
NewRingeisen, E
-
Erickson, JS
-
Wang, Z
-
Garcia, W
-
Curl, E
-
Egbert, RG
-
Yeung, E
-
Vora, GJ
Abstract:
The fast-growing non-model marine bacterium Vibrio natriegens has recently garnered attention as a host for molecular biology and biotechnology applications. In order further its capabilities as a synthetic biology chassis, we have characterized a wide range of genetic parts and tools for use in V. natriegens. These parts include many commonly-used resistance markers, promoters, ribosomal binding sites, reporters, terminators, degradation tags, origin of replication sequences and plasmid backbones. We have characterized the behavior of these parts in different combinations and have compared their functionality in V. natriegens and Escherichia coli. Plasmid stability over time, plasmid copy numbers, and production load on the cells were also evaluated. Additionally, we tested constructs for chemical and optogenetic induction and characterized basic engineered circuit behavior in V. natriegens. The results indicate that while most parts and constructs work similarly in the two organisms, some deviate significantly. Overall, these results will serve as a primer for anyone interested in engineering V. natriegens and will aid in developing more robust synthetic biology principles and approaches for this non-model chassis.
962.
Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway.
Abstract:
Protein quality mechanisms are fundamental for proteostasis of eukaryotic cells. Endoplasmic reticulum-associated degradation (ERAD) is a well-studied pathway that ensures quality control of secretory and endoplasmic reticulum (ER)-resident proteins. Different branches of ERAD are involved in degradation of malfolded secretory proteins, depending on the localization of the misfolded part, the ER lumen (ERAD-L), the ER membrane (ERAD-M), and the cytosol (ERAD-C). Here we report that modification of several ER transmembrane proteins with the photosensitive degron (psd) module resulted in light-dependent degradation of the membrane proteins via the ERAD-C pathway. We found dependency on the ubiquitylation machinery including the ubiquitin-activating enzyme Uba1, the ubiquitin--conjugating enzymes Ubc6 and Ubc7, and the ubiquitin-protein ligase Doa10. Moreover, we found involvement of the Cdc48 AAA-ATPase complex members Ufd1 and Npl4, as well as the proteasome, in degradation of Sec62-myc-psd. Thus, our work shows that ERAD-C substrates can be systematically generated via synthetic degron constructs, which facilitates future investigations of the ERAD-C pathway.
963.
Light-Induced Transcription Activation for Time-Lapse Microscopy Experiments in Living Cells.
Abstract:
Gene expression can be monitored in living cells via the binding of fluorescently tagged proteins to RNA repeats engineered into a reporter transcript. This approach makes it possible to trace temporal changes of RNA production in real time in living cells to dissect transcription regulation. For a mechanistic analysis of the underlying activation process, it is essential to induce gene expression with high accuracy. Here, we describe how this can be accomplished with an optogenetic approach termed blue light-induced chromatin recruitment (BLInCR). It employs the recruitment of an activator protein to a target promoter via the interaction between the PHR and CIBN plant protein domains. This process occurs within seconds after setting the light trigger and is reversible. Protocols for continuous activation as well as pulsed activation and reactivation with imaging either by laser scanning confocal microscopy or automated widefield microscopy are provided. For the semiautomated quantification of the resulting image series, an approach has been implemented in a set of scripts in the R programming language. Thus, the complete workflow of the BLInCR method is described for mechanistic studies of the transcription activation process as well as the persistence and memory of the activated state.
964.
A split CRISPR-Cpf1 platform for inducible genome editing and gene activation.
Abstract:
The CRISPR-Cpf1 endonuclease has recently been demonstrated as a powerful tool to manipulate targeted gene sequences. Here, we performed an extensive screening of split Cpf1 fragments and identified a pair that, combined with inducible dimerization domains, enables chemical- and light-inducible genome editing in human cells. We also identified another split Cpf1 pair that is spontaneously activated. The newly generated amino and carboxyl termini of the spontaneously activated split Cpf1 can be repurposed as de novo fusion sites of artificial effector domains. Based on this finding, we generated an improved split dCpf1 activator, which has the potential to activate endogenous genes more efficiently than a previously established dCas9 activator. Finally, we showed that the split dCpf1 activator can efficiently activate target genes in mice. These results demonstrate that the present split Cpf1 provides an efficient and sophisticated genome manipulation in the fields of basic research and biotechnological applications.
965.
Controlling the material properties and rRNA processing function of the nucleolus using light.
Abstract:
The nucleolus is a prominent nuclear condensate that plays a central role in ribosome biogenesis by facilitating the transcription and processing of nascent ribosomal RNA (rRNA). A number of studies have highlighted the active viscoelastic nature of the nucleolus, whose material properties and phase behavior are a consequence of underlying molecular interactions. However, the ways in which the material properties of the nucleolus impact its function in rRNA biogenesis are not understood. Here we utilize the Cry2olig optogenetic system to modulate the viscoelastic properties of the nucleolus. We show that above a threshold concentration of Cry2olig protein, the nucleolus can be gelled into a tightly linked, low mobility meshwork. Gelled nucleoli no longer coalesce and relax into spheres but nonetheless permit continued internal molecular mobility of small proteins. These changes in nucleolar material properties manifest in specific alterations in rRNA processing steps, including a buildup of larger rRNA precursors and a depletion of smaller rRNA precursors. We propose that the flux of processed rRNA may be actively tuned by the cell through modulating nucleolar material properties, which suggests the potential of materials-based approaches for therapeutic intervention in ribosomopathies.
966.
Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion.
-
Mehidi, A
-
Rossier, O
-
Schaks, M
-
Chazeau, A
-
Binamé, F
-
Remorino, A
-
Coppey, M
-
Karatas, Z
-
Sibarita, JB
-
Rottner, K
-
Moreau, V
-
Giannone, G
Abstract:
The spatiotemporal coordination of actin regulators in the lamellipodium determines the dynamics and architecture of branched F-actin networks during cell migration. The WAVE regulatory complex (WRC), an effector of Rac1 during cell protrusion, is concentrated at the lamellipodium tip. Thus, activated Rac1 should operate at this location to activate WRC and trigger membrane protrusion. Yet correlation of Rho GTPase activation with cycles of membrane protrusion previously revealed complex spatiotemporal patterns of Rac1 and RhoA activation in the lamellipodium. Combining single protein tracking (SPT) and super-resolution imaging with loss- or gain-of-function mutants of Rho GTPases, we show that Rac1 immobilizations at the lamellipodium tip correlate with its activation, in contrast to RhoA. Using Rac1 effector loop mutants and wild-type versus mutant variants of WRC, we show that selective immobilizations of activated Rac1 at the lamellipodium tip depend on effector binding, including WRC. In contrast, wild-type Rac1 only displays slower diffusion at the lamellipodium tip, suggesting transient activations. Local optogenetic activation of Rac1, triggered by membrane recruitment of Tiam1, shows that Rac1 activation must occur close to the lamellipodium tip and not behind the lamellipodium to trigger efficient membrane protrusion. However, coupling tracking with optogenetic activation of Rac1 demonstrates that diffusive properties of wild-type Rac1 are unchanged despite enhanced lamellipodium protrusion. Taken together, our results support a model whereby transient activations of Rac1 occurring close to the lamellipodium tip trigger WRC binding. This short-lived activation ensures a local and rapid control of Rac1 actions on its effectors to trigger actin-based protrusion.
967.
Coordination of protrusion dynamics within and between collectively migrating border cells by myosin II.
Abstract:
Collective cell migration is emerging as a major driver of embryonic development, organogenesis, tissue homeostasis, and tumor dissemination. In contrast to individually migrating cells, collectively migrating cells maintain cell-cell adhesions and coordinate direction-sensing as they move. While non-muscle myosin II has been studied extensively in the context of cells migrating individually in vitro, its roles in cells migrating collectively in three-dimensional, native environments are not fully understood. Here we use genetics, Airyscan microscopy, live imaging, optogenetics, and Förster resonance energy transfer to probe the localization, dynamics, and functions of myosin II in migrating border cells of the Drosophila ovary. We find that myosin accumulates transiently at the base of protrusions, where it functions to retract them. E-cadherin and myosin co-localize at border cell-border cell contacts and cooperate to transmit directional information. A phosphomimetic form of myosin is sufficient to convert border cells to a round morphology and blebbing migration mode. Together these studies demonstrate that distinct and dynamic pools of myosin II regulate protrusion dynamics within and between collectively migrating cells and suggest a new model for the role of protrusions in collective direction sensing in vivo. Movie S1 Movie S1 Live imaging of border cell specification and delamination from anterior epithelium From Figure 1D-I. Slbo promoter driving Lifeact-GFP (green) marks border cells, Upd-Gal4, UAS-DsRed.nls (red) mark polar cell nuclei. Hoechst 33342 (blue) marks DNA. Time resolution is 4 min. Movie S2 Movie S2 Representative Z-projected and registered live imaging of Sqh-mCherry accumulating in cortical junctions (flashing arrows) during border cell migration. From Figure 3J-K. Time resolution is 25 sec. Movie S3 Movie S3 Representative Z-projected and registered live imaging of E-cad-GFP during border cell migration. From Figure 3M-N. Time resolution is 60 sec. Movie S4 Movie S4 Representative Z-projection of control flpout cells from hs-Flp;, Slbo>Lifeact-GFP; AyGal4, UAS-RFP. Clonal cells are marked by magenta nuclei (nls-RFP). Time resolution is 2.5 min. From Supp. Figure 3 A-D. Movie S5 Movie S5 Representative Z-projection of Sqh-RNAi flpout cells from hs-Flp;, Slbo>Lifeact-GFP; AyGal4, UAS-RFP, UAS-sqh-RNAi. Clonal cells are marked by magenta nuclei (nls-RFP). Time resolution is 2.5 min. From Supp. Figure 3 E-H. Movie S6 Movie S6 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-white RNAi. Time resolution is 2 min. From Supp. Figure 4 A-D. Movie S7 Movie S7 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-sqh-RNAi showing frequent side protrusions. Time resolution is 2 min. From Supp. Figure 4 E-H. White arrows indicate ectopic side and rear protrusions. Movie S8 Movie S8 Representative Z-projected c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-sqh-RNAi showing long lived side protrusions. Time resolution is 2 min. From Supp. Figure 4 I-L. Movie S9 Movie S9 Representative Z-projected live imaging of c306-Gal4 driving UAS-white-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during periods of protrusive and round migration phases. From Figure 6A-D. 25 min corresponds to 6A and B and 1hr:25 min corresponds to 6C and D. Time resolution is 2.5 min. Movie S10 Movie S10 Sqh-mCherry (magenta) channel from Supplementary Movie 9. From Figure 6A-D. 25 min corresponds to 6A and B and 1hr:25 min corresponds to 6C and D. Time resolution is 2.5 min. Movie S11 Movie S11 Representative Z-projected live imaging of c306-Gal4 driving UAS-Ecad-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during a protrusive phase of migration. From Figure 6E-F. Time resolution is 2.5 min. Movie S12 Movie S12 Sqh-mCherry (magenta) channel from Supplementary Movie 11. From Figure 6E-F. Time resolution is 2.5 min. Movie S13 Movie S13 Representative Z-projected live imaging of c306-Gal4 driving UAS-Ecad-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during a rounded phase of migration. From Figure 6G-H. Time resolution is 2.5 min. Movie S14 Movie S14 Sqh-mCherry (magenta) channel from Supplementary Movie 13. From Figure 6G-H. Time resolution is 2.5 min. Movie S15 Movie S15 Example segmentation analysis from a representative Z-projected time lapse of a cluster expressing c306-Gal4 driving UAS-white-RNAi in clusters co-expressing Lifeact-GFP under the control of the slbo enhancer and Sqh-mCherry from its endogenous promoter during migration. Time lapse analyzed in Imaris by 1. segmentation of the cluster using Lifeact-GFP, 2. Rendering of Sqh-mCherry by masking the inside of the Life-act surface, 3. performing a distance transformation using the masked Sqh-mCherry that is color coded for distance from membrane (dark colors are short distances and bright/white colors are more distant), 4. combining the distance transformation with the Sqh-mCherry mask to only include the cortical 2 μm of the original Sqh-mCherry signal for quantification in Figure 6I. Movie S16 Movie S16 Representative Z-projected time lapse of Lifeact-GFP and Sqh-mCherry expressing clusters used for quantification of Figure 7B-C during protrusion/retractions cycles. Time resolution is 2 min. Movie S17 Movie S17 Sqh-mCherry channel from Supplementary movie 16. Time resolution is 2 min. Movie S18 Movie S18 Representative Z-projections of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-Sqh-E20E21 migrating border cells clusters that split. Time resolution is 2 min. Movie S19 Movie S19 Representative Z-projections of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-LifeactGFP and UAS-Sqh-E20E21 migrating border cells clusters during protrusive phase. Time resolution is 2 min. Movie S20 Movie S20 Representative Z-projection of Lifeact-GFP (green) in c306-Gal4; tub-GAL80ts driving UAS-Lifeact-GFP and UAS-Sqh-E20E21 border cells cluster at the oocyte border during a blebbing phase. Time resolution is 2 min. Movie S21 Movie S21 Representative Z-projection of control cluster expressing slbo-Gal4; UAS-PLCδ1-PH-GFP. Time resolution is 2 min. Movie S22 Movie S22 Representative Z-projection of cluster expressing slbo-Gal4; UAS-PLCδ1-PH-GFP, UAS-Rho1V14. Blebs are marked by white arrows. Time resolution is 2 min.
968.
Reversible photocontrol of oxidase activity by inserting a photosensitive domain into the oxidase.
Abstract:
Background
Photocontrol of protein activity has become a helpful strategy for regulating biological pathways. Herein, a method for the precise and reversible photocontrol of oxidase activity was developed by using the conformational change of the AsLOV2 domain.
Results
The AsLOV2 domain was inserted into the nonconserved sites exposed on the surface of the AdhP protein, and the alov9 fusion was successfully screened for subsequent optical experiments under the assumption that neither of these actions affected the original activity of AdhP protein. The activity of alov9 was noticeably inhibited when the fusion was exposed to 470 nm blue light and recovered within 30 min. As a result, we could precisely and reversibly photocontrol alov9 activity through the optimization of several parameters, including cofactor concentration, light intensity, and illumination time.
Conclusions
An efficient method was developed for the photoinhibition of enzymatic activity based on the insertion of the light-sensitive AsLOV2 domain, providing new ideas for photocontrolling metabolic pathways without carriers in the future.
969.
ESCRT-mediated phagophore sealing during mitophagy.
-
Zhen, Y
-
Spangenberg, H
-
Munson, MJ
-
Brech, A
-
Schink, KO
-
Tan, KW
-
Sørensen, V
-
Wenzel, EM
-
Radulovic, M
-
Engedal, N
-
Simonsen, A
-
Raiborg, C
-
Stenmark, H
Abstract:
Inactivation of the endosomal sorting complex required for transport (ESCRT) machinery has been reported to cause autophagic defects, but the exact functions of ESCRT proteins in macroautophagy/autophagy remain incompletely understood. Using live-cell fluorescence microscopy we found that the filament-forming ESCRT-III subunit CHMP4B was recruited transiently to nascent autophagosomes during starvation-induced autophagy and mitophagy, with residence times of about 1 and 2 min, respectively. Correlative light microscopy and electron tomography revealed CHMP4B recruitment at a late step in mitophagosome formation. The autophagosomal dwell time of CHMP4B was strongly increased by depletion of the regulatory ESCRT-III subunit CHMP2A. Using a novel optogenetic closure assay we observed that depletion of CHMP2A inhibited phagophore sealing during mitophagy. Consistent with this, depletion of CHMP2A and other ESCRT-III subunits inhibited both PRKN/PARKIN-dependent and -independent mitophagy. We conclude that the ESCRT machinery mediates phagophore closure, and that this is essential for mitophagic flux. Abbreviations: BSA: bovine serum albumin; CHMP: chromatin-modifying protein; CLEM: correlative light and electron microscopy; EGFP: enhanced green fluorescent protein; ESCRT: endosomal sorting complex required for transport; HEPES: 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid; HRP: horseradish peroxidase; ILV: intralumenal vesicle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LOV2: light oxygen voltage 2; MLS: mitochondrial localization sequence; MT-CO2: mitochondrially encoded cytochrome c oxidase II; O+A: oligomycin and antimycin A; PBS: phosphate-buffered saline; PIPES: piperazine-N,N-bis(2-ethanesulfonic acid); PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RAB: RAS-related in brain; SD: standard deviation; SEM: standard error of the mean; TOMM20: TOMM20: translocase of outer mitochondrial membrane 20; VCL: vinculin; VPS4: vacuolar protein sorting protein 4; Zdk1: Zdark 1; TUBG: Tubulin gamma chain.
970.
Optogenetic gene editing in regional skin.
Abstract:
Abstract not available.
971.
Versatile cell ablation tools and their applications to study loss of cell functions.
-
Liu, F
-
Dai, S
-
Feng, D
-
Peng, X
-
Qin, Z
-
Kearns, AC
-
Huang, W
-
Chen, Y
-
Ergün, S
-
Wang, H
-
Rappaport, J
-
Bryda, EC
-
Chandrasekhar, A
-
Aktas, B
-
Hu, H
-
Chang, SL
-
Gao, B
-
Qin, X
Abstract:
Targeted cell ablation is a powerful approach for studying the role of specific cell populations in a variety of organotypic functions, including cell differentiation, and organ generation and regeneration. Emerging tools for permanently or conditionally ablating targeted cell populations and transiently inhibiting neuronal activities exhibit a diversity of application and utility. Each tool has distinct features, and none can be universally applied to study different cell types in various tissue compartments. Although these tools have been developed for over 30 years, they require additional improvement. Currently, there is no consensus on how to select the tools to answer the specific scientific questions of interest. Selecting the appropriate cell ablation technique to study the function of a targeted cell population is less straightforward than selecting the method to study a gene's functions. In this review, we discuss the features of the various tools for targeted cell ablation and provide recommendations for optimal application of specific approaches.
972.
Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.
Abstract:
Because small-molecule activators of adenylyl cyclases (AC) affect ACs cell-wide, it is challenging to explore the signaling consequences of AC activity emanating from specific intracellular compartments. We explored this issue using a series of engineered, optogenetic, spatially restricted, photoactivable adenylyl cyclases (PACs) positioned at the plasma membrane (PM), the outer mitochondrial membrane (OMM), and the nucleus (Nu). The biochemical consequences of brief photostimulation of PAC is primarily limited to the intracellular site occupied by the PAC. By contrast, sustained photostimulation results in distal cAMP signaling. Prolonged cAMP generation at the OMM profoundly stimulates nuclear protein kinase (PKA) activity. We have found that phosphodiesterases 3 (OMM and PM) and 4 (PM) modulate proximal (local) cAMP-triggered activity, whereas phosphodiesterase 4 regulates distal cAMP activity as well as the migration of PKA's catalytic subunit into the nucleus.
973.
Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells.
Abstract:
Decorating GUVs, used as minimal synthetic cell models, with photoswitchable proteins allows controlling the adhesion between them and their assembly into multicellular structures with light. Thereby, the chemical communication between a sender and a receiver GUV, which strongly depends on their spatial proximity, can also be photoregulated.
974.
Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact Caenorhabditis elegans.
-
Woldemariam, S
-
Nagpal, J
-
Hill, T
-
Li, J
-
Schneider, MW
-
Shankar, R
-
Futey, M
-
Varshney, A
-
Ali, N
-
Mitchell, J
-
Andersen, K
-
Barsi-Rhyne, B
-
Tran, A
-
Costa, WS
-
Krzyzanowski, MC
-
Yu, YV
-
Brueggemann, C
-
Hamilton, OS
-
Ferkey, DM
-
VanHoven, M
-
Sengupta, P
-
Gottschalk, A
-
L'Etoile, N
Abstract:
cGMP plays a role in sensory signaling and plasticity by regulating ion channels, phosphodiesterases and kinases. Studies that primarily used genetic and biochemical tools suggest that cGMP is spatiotemporally regulated in multiple sensory modalities. FRET- and GFP-based cGMP sensors were developed to visualize cGMP in primary cell culture and Caenorhabditis elegans to corroborate these findings. While a FRET-based sensor has been used in an intact animal to visualize cGMP, the requirement of a multiple emission system limits its ability to be used on its own as well as with other fluorophores. Here, we demonstrate that a C. elegans codon-optimized version of the cpEGFP-based cGMP sensor FlincG3 can be used to visualize rapidly changing cGMP levels in living, behaving C. elegans We coexpressed FlincG3 with the blue light-activated guanylyl cyclases BeCyclOp and bPGC in body wall muscles and found that the rate of change in FlincG3 fluorescence correlated with the rate of cGMP production by each cyclase. Furthermore, we show that FlincG3 responds to cultivation temperature, NaCl concentration changes and sodium dodecyl sulfate in the sensory neurons AFD, ASEL/R and PHB, respectively. Intriguingly, FlincG3 fluorescence in ASEL and ASER decreased in response to a NaCl concentration upstep and downstep, respectively, which is opposite in sign to the coexpressed calcium sensor jRGECO1a and previously published calcium recordings. These results illustrate that FlincG3 can be used to report rapidly changing cGMP levels in an intact animal and that the reporter can potentially reveal unexpected spatiotemporal landscapes of cGMP in response to stimuli.
975.
Light-induced dimerization approaches to control cellular processes.
Abstract:
Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.