Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 876 - 900 of 1813 results
876.

Optogenetic Control of Nucleocytoplasmic Protein Transport.

blue AsLOV2 HEK293T
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_8 Link to full text
Abstract: The transport of proteins between the nucleus and the cytosol is a vital process regulating cellular activity. The ability to spatiotemporally control the nucleocytoplasmic transport of a protein of interest allows for elucidating its function taking into account the dynamic and heterogeneous nature of biological processes contrary to conventional knockin, knockout, and chemically induced overexpression strategies. We recently developed two optogenetic tools, called LINuS and LEXY, for reversibly controlling with blue light the nuclear import and export of proteins of interest, respectively. Here we describe how to use them to control the localization of a protein of interest in cultured mammalian cells using a fluorescence microscope.
877.

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_2 Link to full text
Abstract: G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
878.

Light-Inducible CRISPR Labeling.

blue AsLOV2 U-2 OS
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_9 Link to full text
Abstract: CRISPR labeling is a powerful technique to study the chromatin architecture in live cells. In CRISPR labeling, a catalytically dead CRISPR-Cas9 mutant is employed as programmable DNA-binding domain to recruit fluorescent proteins to selected genomic loci. The fluorescently labeled loci can then be identified as fluorescent spots and tracked over time by microscopy. A limitation of this approach is the lack of temporal control of the labeling process itself: Cas9 binds to the g(uide)RNA-complementary target loci as soon as it is expressed. The decoration of the genome with Cas9 molecules will, however, interfere with gene regulation and-possibly-affect the genome architecture itself. The ability to switch on and off Cas9 DNA binding in CRISPR labeling experiments would thus be important to enable more precise interrogations of the chromatin spatial organization and dynamics and could further be used to study Cas9 DNA binding kinetics directly in living human cells.Here, we describe a detailed protocol for light-inducible CRISPR labeling. Our method employs CASANOVA, an engineered, optogenetic anti-CRISPR protein, which efficiently traps the Streptococcus pyogenes (Spy)Cas9 in the dark, but permits Cas9 DNA targeting upon illumination with blue light. Using telomeres as exemplary target loci, we detail the experimental steps required for inducible CRISPR labeling with CASANOVA. We also provide instructions on how to analyze the resulting microscopy data in a fully automated fashion.
879.

Optogenetics and CRISPR: A New Relationship Built to Last.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_18 Link to full text
Abstract: Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.
880.

Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors.

red BphS HEK293 mouse in vivo Nucleic acid editing
Sci Adv, 10 Jul 2020 DOI: 10.1126/sciadv.abb1777 Link to full text
Abstract: It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)–activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode–based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the PLK1 oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.
881.

Optogenetic Rescue of a Patterning Mutant.

red PhyB/PIF6 D. melanogaster in vivo Signaling cascade control Developmental processes
Curr Biol, 9 Jul 2020 DOI: 10.1016/j.cub.2020.06.059 Link to full text
Abstract: Animal embryos are patterned by a handful of highly conserved inductive signals. Yet, in most cases, it is unknown which pattern features (i.e., spatial gradients or temporal dynamics) are required to support normal development. An ideal experiment to address this question would be to "paint" arbitrary synthetic signaling patterns on "blank canvas" embryos to dissect their requirements. Here, we demonstrate exactly this capability by combining optogenetic control of Ras/extracellular signal-related kinase (ERK) signaling with the genetic loss of the receptor tyrosine-kinase-driven terminal signaling patterning in early Drosophila embryos. Blue-light illumination at the embryonic termini for 90 min was sufficient to rescue normal development, generating viable larvae and fertile adults from an otherwise lethal terminal signaling mutant. Optogenetic rescue was possible even using a simple, all-or-none light input that reduced the gradient of Erk activity and eliminated spatiotemporal differences in terminal gap gene expression. Systematically varying illumination parameters further revealed that at least three distinct developmental programs are triggered at different signaling thresholds and that the morphogenetic movements of gastrulation are robust to a 3-fold variation in the posterior pattern width. These results open the door to controlling tissue organization with simple optical stimuli, providing new tools to probe natural developmental processes, create synthetic tissues with defined organization, or directly correct the patterning errors that underlie developmental defects.
882.

Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury.

blue Magnets E. coli
ACS Sens, 8 Jul 2020 DOI: 10.1021/acssensors.0c00855 Link to full text
Abstract: We present a new concept for whole-cell biosensors that couples the response to Hg2+ with bioluminescence and bacterial aggregation. This allows us to use the bacterial aggregation to preconcentrate the bioluminescent bacteria at the substrate surface and increase the sensitivity of Hg2+ detection. This whole-cell biosensor combines a Hg2+-sensitive bioluminescence reporter and light-responsive bacterial cell-cell adhesions. We demonstrate that the blue luminescence in response to Hg2+ is able to photoactivate bacterial aggregation, which provides a second readout for Hg2+ detection. In return, the Hg2+-triggered bacterial aggregation leads to faster sedimentation and more efficient formation of biofilms. At low Hg2+ concentrations, the enrichment of the bacteria in biofilms leads to an up to 10-fold increase in the signal. The activation of photoswitchable proteins with biological light is a new concept in optogenetics, and the presented bacterial biosensor design is transferable to other bioluminescent reporters with particular interest for environmental monitoring.
883.

SynBio and the Boundaries between Functional and Pathogenic RepA-WH1 Bacterial Amyloids.

blue LOV domains Review
mSystems, 30 Jun 2020 DOI: 10.1128/msystems.00553-20 Link to full text
Abstract: Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
884.

Structural and spectroscopic characterization of photoactive yellow protein and photoswitchable fluorescent protein constructs containing heavy atoms.

blue PYP in vitro
J Photochem Photobiol A Chem, 30 Jun 2020 DOI: 10.1016/j.jphotochem.2020.112738 Link to full text
Abstract: Photo-induced structural rearrangements of chromophore-containing proteins are essential for various light-dependent signaling pathways and optogenetic applications. Ultrafast structural and spectroscopic methods have offered insights into these structural rearrangements across many timescales. However, questions still remain about exact mechanistic details, especially regarding photoisomerization of the chromophore within these proteins femtoseconds to picoseconds after photoexcitation. Instrumentation advancements for time-resolved crystallography and ultrafast electron diffraction provide a promising opportunity to study these reactions, but achieving enough signal-to-noise is a constant challenge. Here we present four new photoactive yellow protein constructs and one new fluorescent protein construct that contain heavy atoms either within or around the chromophore and can be expressed with high yields. Structural characterization of these constructs, most at atomic resolution, show minimal perturbation caused by the heavy atoms compared to wild-type structures. Spectroscopic studies report the effects of the heavy atom identity and location on the chromophore's photophysical properties. None of the substitutions prevent photoisomerization, although certain rates within the photocycle may be affected. Overall, these new proteins containing heavy atoms are ideal samples for state-of-theart time-resolved crystallography and electron diffraction experiments to elucidate crucial mechanistic information of photoisomerization.
885.

Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.

blue LOV domains Background
Biochemistry, 29 Jun 2020 DOI: 10.1021/acs.biochem.0c00271 Link to full text
Abstract: Light oxygen voltage-sensing (LOV) domains are widely found in photoreceptor proteins of plants, algae, fungi, and bacteria. Structural studies of LOV domains suggest that Phe and Gln residues located in the proximity of the chromophore undergo conformational changes upon illumination; however, the molecular mechanism associated with activation of the effector domain remains to be elucidated. Photozipper (PZ) protein is an N-terminally truncated aureochrome-1 comprising a LOV domain and a basic leucine zipper domain. Blue light (BL) induces PZ dimerization and subsequently increases its affinity for target DNA. In this study, we prepared PZ mutants with substitutions of F298 and Q317 and performed quantitative analyses in dark and light states. Substitutions of Q317 significantly reduced the light-induced changes in PZ affinity for the target DNA, especially in the case of the high affinities observed in the dark state. Upon illumination, all PZ mutants showed increased affinity for the target sequence, which demonstrated a clear correlation with the dimer fraction of each PZ mutant. These results suggest the existence of a conformational equilibrium and that its shift by a synergistic interaction between the chromophore and protein moiety probably enables BL-regulated switching of aureochrome-1.
886.

Optogenetic control of gene expression in plants in the presence of ambient white light.

blue red EL222 PhyB/PIF6 A. thaliana leaf protoplasts N. benthamiana in vivo Transgene expression Multichromatic
Nat Methods, 29 Jun 2020 DOI: 10.1038/s41592-020-0868-y Link to full text
Abstract: Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
887.

Illuminating a Phytochrome Paradigm- a Light-Activated Phosphatase in Two-Component Signaling Uncovered.

red Phytochromes Background
bioRxiv, 27 Jun 2020 DOI: 10.1101/2020.06.26.173310 Link to full text
Abstract: Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.
888.

βH-spectrin is required for ratcheting apical pulsatile constrictions during tissue invagination.

blue CRY2/CIB1 D. melanogaster in vivo Control of cytoskeleton / cell motility / cell shape Developmental processes
EMBO Rep, 26 Jun 2020 DOI: 10.15252/embr.201949858 Link to full text
Abstract: Actomyosin-mediated apical constriction drives a wide range of morphogenetic processes. Activation of myosin-II initiates pulsatile cycles of apical constrictions followed by either relaxation or stabilization (ratcheting) of the apical surface. While relaxation leads to dissipation of contractile forces, ratcheting is critical for the generation of tissue-level tension and changes in tissue shape. How ratcheting is controlled at the molecular level is unknown. Here, we show that the actin crosslinker βH-spectrin is upregulated at the apical surface of invaginating mesodermal cells during Drosophila gastrulation. βH-spectrin forms a network of filaments which co-localize with medio-apical actomyosin fibers, in a process that depends on the mesoderm-transcription factor Twist and activation of Rho signaling. βH-spectrin knockdown results in non-ratcheted apical constrictions and inhibition of mesoderm invagination, recapitulating twist mutant embryos. βH-spectrin is thus a key regulator of apical ratcheting during tissue invagination, suggesting that actin cross-linking plays a critical role in this process.
889.

Early But Not Delayed Optogenetic RAF Activation Promotes Astrocytogenesis in Mouse Neural Progenitors.

blue CRY2/CIB1 mouse neural progenitor cells Signaling cascade control Developmental processes
J Mol Biol, 26 Jun 2020 DOI: 10.1016/j.jmb.2020.06.020 Link to full text
Abstract: The RAS/RAF/MEK/ERK pathway promotes gliogenesis but the kinetic role of RAF1, a key RAF kinase, in the induction of astrocytogenesis remains to be elucidated. To address this challenge, we determine the temporal functional outcome of RAF1 during mouse neural progenitor cell differentiation using an optogenetic RAF1 system (OptoRAF1). OptoRAF1 allows for reversible activation of the RAF/MEK/ERK pathway via plasma membrane recruitment of RAF1 based on blue light-sensitive protein dimerizer CRY2/CIB1. We found that early light-induced OptoRAF1 activation in neural progenitor cells promotes cell proliferation and increased expression of glial markers and glia-enriched genes. However, delayed OptoRAF1 activation in differentiated neural progenitor had little effect on glia marker expression, suggesting that RAF1 is required to promote astrocytogenesis only within a short time window. In addition, activation of OptoRAF1 did not have a significant effect on neurogenesis, but was able to promote neuronal neurite growth.
890.

Photoactivatable RNA N6 -Methyladenosine Editing with CRISPR-Cas13.

blue CRY2/CIB1 HEK293T HeLa primary mouse BMSCs Epigenetic modification
Small, 25 Jun 2020 DOI: 10.1002/smll.201907301 Link to full text
Abstract: RNA has important and diverse biological roles, but the molecular methods to manipulate it spatiotemporally are limited. Here, an engineered photoactivatable RNA N6 -methyladenosine (m6 A) editing system with CRISPR-Cas13 is designed to direct specific m6 A editing. Light-inducible heterodimerizing proteins CIBN and CRY2PHR are fused to catalytically inactive PguCas13 (dCas13) and m6 A effectors, respectively. This system, referred to as PAMEC, enables the spatiotemporal control of m6 A editing in response to blue light. Further optimization of this system to create a highly efficient version, known as PAMECR , allows the manipulation of multiple genes robustly and simultaneously. When coupled with an upconversion nanoparticle film, the optogenetic operation window is extended from the visible range to tissue-penetrable near-infrared wavelengths, which offers an appealing avenue to remotely control RNA editing. These results show that PAMEC is a promising optogenetic platform for flexible and efficient targeting of RNA, with broad applicability for epitranscriptome engineering, imaging, and future therapeutic development.
891.

Biliverdin reductase-A deficiency brighten and sensitize biliverdin-binding chromoproteins.

near-infrared BphP1/PpsR2 HeLa
Cell Struct Funct, 25 Jun 2020 DOI: 10.1247/csf.20010 Link to full text
Abstract: Tissue absorbance, light scattering, and autofluorescence are significantly lower in the near-infrared (NIR) range than in the visible range. Because of these advantages, NIR fluorescent proteins (FPs) are in high demand for in vivo imaging. Nevertheless, application of NIR FPs such as iRFP is still limited due to their dimness in mammalian cells. In contrast to GFP and its variants, iRFP requires biliverdin (BV) as a chromophore. The dimness of iRFP is at least partly due to rapid reduction of BV by biliverdin reductase A (BLVRA). Here, we established biliverdin reductase-a knockout (Blvra-/-) mice to increase the intracellular BV concentration and, thereby, to enhance iRFP fluorescence intensity. As anticipated, iRFP fluorescence intensity was significantly increased in all examined tissues of Blvra-/- mice. Similarly, the genetically encoded calcium indicator NIR-GECO1, which is engineered based on another NIR FP, mIFP, exhibited a marked increase in fluorescence intensity in mouse embryonic fibroblasts derived from Blvra-/- mice. We expanded this approach to an NIR light-sensing optogenetic tool, the BphP1-PpsR2 system, which also requires BV as a chromophore. Again, deletion of the Blvra gene markedly enhanced the light response in HeLa cells. These results indicate that the Blvra-/- mouse is a versatile tool for the in vivo application of NIR FPs and NIR light-sensing optogenetic tools. Key words: in vivo imaging, near-infrared fluorescent protein, biliverdin, biliverdin reductase, optogenetic tool.
892.

Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes.

blue CRY2/CIB1 3T3-L1 Signaling cascade control Control of vesicular transport
J Mol Biol, 25 Jun 2020 DOI: 10.1016/j.jmb.2020.06.019 Link to full text
Abstract: Phosphoinositides are important signaling molecules involved in the regulation of vesicular trafficking. It has been implicated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in insulin-regulated GLUT4 translocation in adipocytes. However, it remains unclear where and how PI(4,5)P2 regulates discrete steps of GLUT4 vesicle translocation in adipocytes, especially on the exocytic arm of regulation. Here, we employed optogenetic tools to acutely control the PI(4,5)P2 metabolism in living cells. By combination of TIRFM imaging, we were able to monitor the temporal-spatial-dependent PI(4,5)P2 regulation on discrete steps of GLUT4 translocation in adipocytes. We found that the plasma membrane localized PI(4,5)P2 is crucial for proper insulin signaling propagation and for insulin-stimulated GLUT4 vesicle translocation in 3T3-L1 adipocytes. Global depletion of PI(4,5)P2 on the cell surface blunted insulin-stimulated Akt phosphorylation and abolished insulin effects in promotion of the docking and fusion of GLUT4 vesicle with the plasma membrane. Furthermore, by development of a novel optogenetic module to selectively modulate PI(4,5)P2 levels on the GLUT4 vesicle docking site, we identified an important regulatory role of PI(4,5)P2 in controlling of vesicle docking process. Local depletion of PI(4,5)P2 at the vesicle docking site promoted GLUT4 vesicle undocking, diminished insulin-stimulated GLUT4 vesicle docking and fusion, but without perturbation of insulin signaling propagation in adipocytes. Our results provide strong evidence that cell surface PI(4,5)P2 plays two distinct functions on regulation of the exocytic trafficking of GLUT4 in adipocytes. PI(4,5)P2 not only regulates the proper activation of insulin signaling in general but also controls GLUT4 vesicle docking process at the vesicle-membrane contact sites.
893.

Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium.

blue red bPAC (BlaC) LAPD HEK293 mIMCD-3 Signaling cascade control Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 24 Jun 2020 DOI: 10.7554/elife.57907 Link to full text
Abstract: Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
894.

Development of optogenetic tools to manipulate cell cycle checkpoints.

red PhyB/PIF3 S. pombe Cell cycle control
bioRxiv, 23 Jun 2020 DOI: 10.1101/2020.06.22.166264 Link to full text
Abstract: In order to understand the systematic regulation of the cell cycle, we need more precise tools for cell-cycle perturbation. Optogenetics is a powerful technique for precisely controlling cellular signaling at higher spatial and temporal resolution. Here, we report optogenetic tools for the rapid and reversible control of cell-cycle checkpoints with a red/far-red light photoreceptor, phytochrome B (PhyB). We established fission yeast cells producing phycocyanobilin as a chromophore of PhyB, and demonstrated light-dependent protein recruitment to the plasma membrane, nucleus, and kinetochore. Using this system, we developed optogenetic manipulation of the cell cycle in two ways: the Opto-G2/M checkpoint triggered G2/M cell cycle arrest in response to red light, and Opto-SAC induced a spindle assembly checkpoint (SAC) in response to red light and then quickly released the SAC by far-red light.
895.

PhotoGal4: A Versatile Light-Dependent Switch for Spatiotemporal Control of Gene Expression in Drosophila Explants.

red PhyB/PIF6 Schneider 2 Transgene expression
iScience, 23 Jun 2020 DOI: 10.1016/j.isci.2020.101308 Link to full text
Abstract: We present here PhotoGal4, a phytochrome B-based optogenetic switch for fine-tuned spatiotemporal control of gene expression in Drosophila explants. This switch integrates the light-dependent interaction between phytochrome B and PIF6 from plants with regulatory elements from the yeast Gal4/UAS system. We found that PhotoGal4 efficiently activates and deactivates gene expression upon red- or far-red-light irradiation, respectively. In addition, this optogenetic tool reacts to different illumination conditions, allowing for fine modulation of the light-dependent response. Importantly, by simply focusing a laser beam, PhotoGal4 induces intricate patterns of expression in a customized manner. For instance, we successfully sketched personalized patterns of GFP fluorescence such as emoji-like shapes or letterform logos in Drosophila explants, which illustrates the exquisite precision and versatility of this tool. Hence, we anticipate that PhotoGal4 will expand the powerful Drosophila toolbox and will provide a new avenue to investigate intricate and complex problems in biomedical research.
896.

Genetically-encoded biosensors for analyzing and controlling cellular process in yeast.

blue BLUF domains Cryptochromes Review
Curr Opin Biotechnol, 18 Jun 2020 DOI: 10.1016/j.copbio.2020.04.006 Link to full text
Abstract: Yeast has been a robust platform to manufacture a broad range of biofuels, commodity chemicals, natural products and pharmaceuticals. The membrane-bound organelles in yeast provide us the means to access the specialized metabolism for various biosynthetic applications. The separation and compartmentalization of genetic and metabolic events presents us the opportunity to precisely control and program gene expression for higher order biological functions. To further advance yeast synthetic biology platform, genetically encoded biosensors and actuators haven been engineered for in vivo monitoring and controlling cellular processes with spatiotemporal resolutions. The dynamic response, sensitivity and operational range of these genetically encoded sensors are determined by the regulatory architecture, dynamic assemly and interactions of the related proteins and genetic elements. This review provides an update of the basic design principles underlying the allosteric transcription factors, GPCR and optogenetics-based sensors, aiming to precisely analyze and control yeast cellular processes for various biotechnological applications.
897.

Targeted cell ablation in zebrafish using optogenetic transcriptional control.

blue VVD zebrafish in vivo Transgene expression Cell death
Development, 17 Jun 2020 DOI: 10.1242/dev.183640 Link to full text
Abstract: Cell ablation is a powerful method for elucidating the contributions of individual cell populations to embryonic development and tissue regeneration. Targeted cell loss in whole organisms has been typically achieved through expression of a cytotoxic or prodrug-activating gene product in the cell type of interest. This approach depends on the availability of tissue-specific promoters, and it does not allow further spatial selectivity within the promoter-defined region(s). To address this limitation, we have used the light-inducible GAVPO transactivator in combination with two genetically encoded cell-ablation technologies: the nitroreductase/nitrofuran system and a cytotoxic variant of the M2 ion channel. Our studies establish ablative methods that provide the tissue specificity afforded by cis-regulatory elements and the conditionality of optogenetics. Our studies also demonstrate differences between the nitroreductase and M2 systems that influence their efficacies for specific applications. Using this integrative approach, we have ablated cells in zebrafish embryos with both spatial and temporal control.
898.

The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions.

red Phytochromes Background
J Mol Biol, 10 Jun 2020 DOI: 10.1016/j.jmb.2020.06.001 Link to full text
Abstract: Plant phytochromes enable vital adaptations to red and far-red light. At the molecular level, these responses are mediated by light-regulated interactions between phytochromes and partner proteins, foremost the phytochrome-interacting factors (PIF). Although known for decades, quantitative analyses of these interactions have long been sparse. To address this deficit, we here studied by an integrated fluorescence-spectroscopic approach the equilibrium and kinetics of Arabidopsis thaliana phytochrome B (AtPhyB) binding to a tetramerized PIF6 variant. Several readouts consistently showed the stringently light-regulated interaction to be little affected by PIF tetramerization. Analysis of the binding kinetics allowed the determination of bimolecular association and unimolecular dissociation rate constants as a function of light. Unexpectedly, the stronger affinity of AtPhyB under red light relative to far-red light is entirely due to accelerated association rather than decelerated dissociation. The association reaction under red light is highly efficient and only threefold slower than the diffusion limit. The present findings pertain equally to the analysis of signal transduction in plants and to the biotechnological application of phytochromes.
899.

Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.

blue CRY2/CRY2 hESCs Signaling cascade control Cell differentiation
Cell Rep, 9 Jun 2020 DOI: 10.1016/j.celrep.2020.107737 Link to full text
Abstract: Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
900.

Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects.

blue AsLOV2 zebrafish in vivo Control of cytoskeleton / cell motility / cell shape
Dev Cell, 8 Jun 2020 DOI: 10.1016/j.devcel.2020.05.009 Link to full text
Abstract: Axons connect neurons together, establishing the wiring architecture of neuronal networks. Axonal connectivity is largely built during embryonic development through highly constrained processes of axon guidance, which have been extensively studied. However, the inability to control axon guidance, and thus neuronal network architecture, has limited investigation of how axonal connections influence subsequent development and function of neuronal networks. Here, we use zebrafish motor neurons expressing a photoactivatable Rac1 to co-opt endogenous growth cone guidance machinery to precisely and non-invasively direct axon growth using light. Axons can be guided over large distances, within complex environments of living organisms, overriding competing endogenous signals and redirecting axons across potent repulsive barriers to construct novel circuitry. Notably, genetic axon guidance defects can be rescued, restoring functional connectivity. These data demonstrate that intrinsic growth cone guidance machinery can be co-opted to non-invasively build new connectivity, allowing investigation of neural network dynamics in intact living organisms.
Submit a new publication to our database