Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 851 - 875 of 1060 results
851.

Optogenetic switches for light-controlled gene expression in yeast.

blue near-infrared red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Appl Microbiol Biotechnol, 16 Feb 2017 DOI: 10.1007/s00253-017-8178-8 Link to full text
Abstract: Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings.
852.

Evolution of a split RNA polymerase as a versatile biosensor platform.

blue iLID E. coli
Nat Chem Biol, 13 Feb 2017 DOI: 10.1038/nchembio.2299 Link to full text
Abstract: Biosensors that transduce target chemical and biochemical inputs into genetic outputs are essential for bioengineering and synthetic biology. Current biosensor design strategies are often limited by a low signal-to-noise ratio, the extensive optimization required for each new input, and poor performance in mammalian cells. Here we report the development of a proximity-dependent split RNA polymerase (RNAP) as a general platform for biosensor engineering. After discovering that interactions between fused proteins modulate the assembly of a split T7 RNAP, we optimized the split RNAP components for protein-protein interaction detection by phage-assisted continuous evolution (PACE). We then applied the resulting activity-responsive RNAP (AR) system to create biosensors that can be activated by light and small molecules, demonstrating the 'plug-and-play' nature of the platform. Finally, we validated that ARs can interrogate multidimensional protein-protein interactions and trigger RNA nanostructure production, protein synthesis, and gene knockdown in mammalian systems, illustrating the versatility of ARs in synthetic biology applications.
853.

Investigations of human myosin VI targeting using optogenetically controlled cargo loading.

blue AsLOV2 HeLa in vitro Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Proc Natl Acad Sci USA, 13 Feb 2017 DOI: 10.1073/pnas.1614716114 Link to full text
Abstract: Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca(2+), lipid, and protein cargo signals in the cell to deploy in a site-specific manner.
854.

Glutamine Amide Flip Elicits Long Distance Allosteric Responses in the LOV Protein Vivid.

blue LOV domains Background
J Am Chem Soc, 1 Feb 2017 DOI: 10.1021/jacs.6b10701 Link to full text
Abstract: Light-oxygen-voltage (LOV) domains sense blue light through the photochemical formation of a cysteinyl-flavin covalent adduct. Concurrent protonation at the flavin N5 position alters the hydrogen bonding interactions of an invariant Gln residue that has been proposed to flip its amide side chain as a critical step in the propagation of conformational change. Traditional molecular dynamics (MD) and replica-exchange MD (REMD) simulations of the well-characterized LOV protein Vivid (VVD) demonstrate that the Gln182 amide indeed reorients by ∼180° in response to either adduct formation or reduction of the isoalloxazine ring to the neutral semiquinone, both of which involve N5 protonation. Free energy simulations reveal that the relative free energies of the flipped Gln conformation and the flipping barrier are significantly lower in the light-adapted state. The Gln182 flip stabilizes an important hinge-bβ region between the PAS β-sheet and the N-terminal cap helix that in turn destabilizes an N-terminal latch region against the PAS core. Release of the latch, observed both experimentally and in the simulations, is known to mediate light-induced VVD dimerization. This computational study of a LOV protein, unprecedented in its agreement with experiment, provides an atomistic view of long-range allosteric coupling in a photoreceptor.
855.

Femtosecond to Millisecond Dynamics of Light Induced Allostery in the Avena sativa LOV Domain.

blue LOV domains Background
J Phys Chem B, 25 Jan 2017 DOI: 10.1021/acs.jpcb.7b00088 Link to full text
Abstract: The rational engineering of photosensor proteins underpins the field of optogenetics, in which light is used for spatiotemporal control of cell signaling. Optogenetic elements function by converting electronic excitation of an embedded chromophore into structural changes on the microseconds to seconds time scale, which then modulate the activity of output domains responsible for biological signaling. Using time-resolved vibrational spectroscopy coupled with isotope labeling, we have mapped the structural evolution of the LOV2 domain of the flavin binding phototropin Avena sativa (AsLOV2) over 10 decades of time, reporting structural dynamics between 100 fs and 1 ms after optical excitation. The transient vibrational spectra contain contributions from both the flavin chromophore and the surrounding protein matrix. These contributions are resolved and assigned through the study of four different isotopically labeled samples. High signal-to-noise data permit the detailed analysis of kinetics associated with the light activated structural evolution. A pathway for the photocycle consistent with the data is proposed. The earliest events occur in the flavin binding pocket, where a subpicosecond perturbation of the protein matrix occurs. In this perturbed environment, the previously characterized reaction between triplet state isoalloxazine and an adjacent cysteine leads to formation of the adduct state; this step is shown to exhibit dispersive kinetics. This reaction promotes coupling of the optical excitation to successive time-dependent structural changes, initially in the β-sheet and then α-helix regions of the AsLOV2 domain, which ultimately gives rise to Jα-helix unfolding, yielding the signaling state. This model is tested through point mutagenesis, elucidating in particular the key mediating role played by Q513.
856.

The Spatiotemporal Limits of Developmental Erk Signaling.

blue red iLID PhyB/PIF6 D. melanogaster in vivo Schneider 2 Signaling cascade control Developmental processes
Dev Cell, 23 Jan 2017 DOI: 10.1016/j.devcel.2016.12.002 Link to full text
Abstract: Animal development is characterized by signaling events that occur at precise locations and times within the embryo, but determining when and where such precision is needed for proper embryogenesis has been a long-standing challenge. Here we address this question for extracellular signal regulated kinase (Erk) signaling, a key developmental patterning cue. We describe an optogenetic system for activating Erk with high spatiotemporal precision in vivo. Implementing this system in Drosophila, we find that embryogenesis is remarkably robust to ectopic Erk signaling, except from 1 to 4 hr post-fertilization, when perturbing the spatial extent of Erk pathway activation leads to dramatic disruptions of patterning and morphogenesis. Later in development, the effects of ectopic signaling are buffered, at least in part, by combinatorial mechanisms. Our approach can be used to systematically probe the differential contributions of the Ras/Erk pathway and concurrent signals, leading to a more quantitative understanding of developmental signaling.
857.

Drive the Car(go)s-New Modalities to Control Cargo Trafficking in Live Cells.

blue Cryptochromes LOV domains Review
Front Mol Neurosci, 20 Jan 2017 DOI: 10.3389/fnmol.2017.00004 Link to full text
Abstract: Synaptic transmission is a fundamental molecular process underlying learning and memory. Successful synaptic transmission involves coupled interaction between electrical signals (action potentials) and chemical signals (neurotransmitters). Defective synaptic transmission has been reported in a variety of neurological disorders such as Autism and Alzheimer's disease. A large variety of macromolecules and organelles are enriched near functional synapses. Although a portion of macromolecules can be produced locally at the synapse, a large number of synaptic components especially the membrane-bound receptors and peptide neurotransmitters require active transport machinery to reach their sites of action. This spatial relocation is mediated by energy-consuming, motor protein-driven cargo trafficking. Properly regulated cargo trafficking is of fundamental importance to neuronal functions, including synaptic transmission. In this review, we discuss the molecular machinery of cargo trafficking with emphasis on new experimental strategies that enable direct modulation of cargo trafficking in live cells. These strategies promise to provide insights into a quantitative understanding of cargo trafficking, which could lead to new intervention strategies for the treatment of neurological diseases.
858.

Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles.

blue CRY2/CIB1 TULIP HEK293 Control of intracellular / vesicular transport
Biochem Biophys Res Commun, 19 Jan 2017 DOI: 10.1016/j.bbrc.2017.01.090 Link to full text
Abstract: Transcription activator-like effector (TALE) proteins present a powerful tool for genome editing and engineering, enabling introduction of site-specific mutations, gene knockouts or regulation of the transcription levels of selected genes. TALE nucleases or TALE-based transcription regulators are introduced into mammalian cells mainly via delivery of the coding genes. Here we report an extracellular vesicle-mediated delivery of TALE transcription regulators and their ability to upregulate the reporter gene in target cells. Designed transcriptional activator TALE-VP16 fused to the appropriate dimerization domain was enriched as a cargo protein within extracellular vesicles produced by mammalian HEK293 cells stimulated by Ca-ionophore and using blue light- or rapamycin-inducible dimerization systems. Blue light illumination or rapamycin increased the amount of the TALE-VP16 activator in extracellular vesicles and their addition to the target cells resulted in an increased expression of the reporter gene upon addition of extracellular vesicles to the target cells. This technology therefore represents an efficient delivery for the TALE-based transcriptional regulators.
859.

Optogenetic toolkit for precise control of calcium signaling.

blue Cryptochromes LOV domains Review
Cell Calcium, 16 Jan 2017 DOI: 10.1016/j.ceca.2017.01.004 Link to full text
Abstract: Calcium acts as a second messenger to regulate a myriad of cell functions, ranging from short-term muscle contraction and cell motility to long-term changes in gene expression and metabolism. To study the impact of Ca2+-modulated 'ON' and 'OFF' reactions in mammalian cells, pharmacological tools and 'caged' compounds are commonly used under various experimental conditions. The use of these reagents for precise control of Ca2+ signals, nonetheless, is impeded by lack of reversibility and specificity. The recently developed optogenetic tools, particularly those built upon engineered Ca2+ release-activated Ca2+ (CRAC) channels, provide exciting opportunities to remotely and non-invasively modulate Ca2+ signaling due to their superior spatiotemporal resolution and rapid reversibility. In this review, we briefly summarize the latest advances in the development of optogenetic tools (collectively termed as 'genetically encoded Ca2+ actuators', or GECAs) that are tailored for the interrogation of Ca2+ signaling, as well as their applications in remote neuromodulation and optogenetic immunomodulation. Our goal is to provide a general guide to choosing appropriate GECAs for optical control of Ca2+ signaling in cellulo, and in parallel, to stimulate further thoughts on evolving non-opsin-based optogenetics into a fully fledged technology for the study of Ca2+-dependent activities in vivo.
860.

Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System.

blue miniSOG D. melanogaster in vivo HEK293T in vitro Cell death Developmental processes
Cell Chem Biol, 5 Jan 2017 DOI: 10.1016/j.chembiol.2016.12.010 Link to full text
Abstract: Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva. In addition, miniSOG2 is able to photoablate a small group of cells in one of the larval wing imaginal discs, resulting in an adult with one incomplete and one normal wing. We expect miniSOG2 to be a useful optogenetic tool for precision cell ablation at a desired developmental time point in live animals, thus opening a new window into cell origin, fate and function, tissue regeneration, and developmental biology.
861.

LOV2-Controlled Photoactivation of Protein Trans-Splicing.

blue AsLOV2 HEK293 HeLa
Methods Mol Biol, 2017 DOI: 10.1007/978-1-4939-6451-2_15 Link to full text
Abstract: Protein trans-splicing is a posttranslational modification that joins two protein fragments together via a peptide a bond in a process that does not require exogenous cofactors. Towards achieving cellular control, synthetically engineered systems have used a variety of stimuli such as small molecules and light. Recently, split inteins have been engineered to be photoactive by the LOV2 domain (named LOVInC). Herein, we discuss (1) designing of LOV2-activated target proteins (e.g., inteins), (2) selecting feasible splice sites for the extein, and (3) imaging cells that express LOVInC-based target exteins.
862.

The STIM-Orai Pathway: Light-Operated Ca2+ Entry Through Engineered CRAC Channels.

blue Cryptochromes LOV domains Review
Adv Exp Med Biol, 2017 DOI: 10.1007/978-3-319-57732-6_7 Link to full text
Abstract: Ca2+ signals regulate a plethora of cellular functions that include muscle contraction, heart beating, hormone secretion, lymphocyte activation, gene expression, and metabolism. To study the impact of Ca2+ signals on biological processes, pharmacological tools and caged compounds have been commonly applied to induce fluctuations of intracellular Ca2+ concentrations. These conventional approaches, nonetheless, lack rapid reversibility and high spatiotemporal resolution. To overcome these disadvantages, we and others have devised a series of photoactivatable genetically encoded Ca2+ actuators (GECAs) by installing light sensitivities into a bona fide highly selective Ca2+ channel, the Ca2+ release-activated Ca2+ (CRAC) channel. Store-operated CRAC channel serves as a major route for Ca2+ entry in many cell types. These GECAs enable remote and precise manipulation of Ca2+ signaling in both excitable and non-excitable cells. When combined with nanotechnology, it becomes feasible to wirelessly photo-modulate Ca2+-dependent activities in vivo. In this chapter, we briefly review most recent advances in engineering CRAC channels to achieve optical control over Ca2+ signaling, outline their design principles and kinetic features, and present exemplary applications of GECAs engineered from CRAC channels.
863.

TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control.

blue EL222 zebrafish in vivo Transgene expression Developmental processes
Development, 19 Dec 2016 DOI: 10.1242/dev.139238 Link to full text
Abstract: Here, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics. We validate several strategies to spatially restrict illumination and thus gene induction with our new TAEL (TA4-EL222) system. As a functional example, we show that TAEL is able to induce ectopic endodermal cells in the presumptive ectoderm via targeted sox32 induction. We also demonstrate that TAEL can be used to resolve multiple roles of Nodal signaling at different stages of embryonic development. Finally, we show how inducible gene editing can be achieved by combining the TAEL and CRISPR/Cas9 systems. This toolkit should be a broadly useful resource for the fish community.
864.

Engineering extrinsic disorder to control protein activity in living cells.

blue AsLOV2 3T3MEF HEK293 HEK293T HeLa SYF Control of cytoskeleton / cell motility / cell shape
Science, 16 Dec 2016 DOI: 10.1126/science.aah3404 Link to full text
Abstract: Optogenetic and chemogenetic control of proteins has revealed otherwise inaccessible facets of signaling dynamics. Here, we use light- or ligand-sensitive domains to modulate the structural disorder of diverse proteins, thereby generating robust allosteric switches. Sensory domains were inserted into nonconserved, surface-exposed loops that were tight and identified computationally as allosterically coupled to active sites. Allosteric switches introduced into motility signaling proteins (kinases, guanosine triphosphatases, and guanine exchange factors) controlled conversion between conformations closely resembling natural active and inactive states, as well as modulated the morphodynamics of living cells. Our results illustrate a broadly applicable approach to design physiological protein switches.
865.

LOVTRAP: A Versatile Method to Control Protein Function with Light.

blue LOVTRAP Cos-7 HEK293 HeLa
Curr Protoc Cell Biol, 1 Dec 2016 DOI: 10.1002/cpcb.12 Link to full text
Abstract: We describe a detailed procedure for the use of LOVTRAP, an approach to reversibly sequester and release proteins from cellular membranes using light. In the application described here, proteins that act at the plasma membrane are held at mitochondria in the dark, and reversibly released by irradiation. The technique relies on binding of an engineered Zdk domain to a LOV2 domain, with affinity <30 nM in the dark and >500 nM upon irradiation between 400 and 500 nm. LOVTRAP can be applied to diverse proteins, as it requires attaching only one member of the Zdk/LOV2 pair to the target protein, and the other to the membrane where the target protein is to be sequestered. Light-induced protein release occurs in less than a second, and the half-life of return can be adjusted using LOV point mutations (∼2 to 500 sec). © 2016 by John Wiley & Sons, Inc.
866.

Strategies for the photo-control of endogenous protein activity.

blue Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Struct Biol, 28 Nov 2016 DOI: 10.1016/j.sbi.2016.11.014 Link to full text
Abstract: Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field.
867.

Engineered Photoactivatable Genetic Switches Based on the Bacterium Phage T7 RNA Polymerase.

blue Magnets VVD E. coli
ACS Synth Biol, 15 Nov 2016 DOI: 10.1021/acssynbio.6b00248 Link to full text
Abstract: Genetic switches in which the activity of T7 RNA polymerase (RNAP) is directly regulated by external signals are obtained with an engineering strategy of splitting the protein into fragments and using regulatory domains to modulate their reconstitutions. Robust switchable systems with excellent dark-off/light-on properties are obtained with the light-activatable VVD domain and its variants as regulatory domains. For the best split position found, working switches exploit either the light-induced interactions between the VVD domains or allosteric effects. The split fragments show high modularity when they are combined with different regulatory domains such as those with chemically inducible interaction, enabling chemically controlled switches. To summarize, the T7 RNA polymerase-based switches are powerful tools to implement light-activated gene expression in different contexts. Moreover, results about the studied split positions and domain organizations may facilitate future engineering studies on this and on related proteins.
868.

Strategies for development of optogenetic systems and their applications.

blue cyan near-infrared red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
J Photochem Photobiol C, 14 Nov 2016 DOI: 10.1016/j.jphotochemrev.2016.10.003 Link to full text
Abstract: It has become clear that biological processes are highly dynamic and heterogeneous within and among cells. Conventional analytical tools and chemical or genetic manipulations are unsuitable for dissecting the role of their spatiotemporally dynamic nature. Recently, optical control of biomolecular signaling, a technology called “optogenetics,” has gained much attention. The technique has enabled spatial and temporal regulation of specific signaling pathways both in vitro and in vivo. This review presents strategies for optogenetic systems development and application for biological research. Combinations with other technologies and future perspectives are also discussed herein. Although many optogenetic approaches are designed to modulate ion channel conductivity, we mainly examine systems that target other biomolecular reactions such as gene expression, protein translocations, and kinase or receptor signaling pathways.
869.

Optogenetics - Bringing light into the darkness of mammalian signal transduction.

blue cyan red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biochim Biophys Acta, 11 Nov 2016 DOI: 10.1016/j.bbamcr.2016.11.009 Link to full text
Abstract: Cells receive many different environmental clues to which they must adapt accordingly. Therefore, a complex signal transduction network has evolved. Cellular signal transduction is a highly dynamic process, in which the specific outcome is a result of the exact spatial and temporal resolution of single sub-events. While conventional techniques, like chemical inducer systems, have led to a sound understanding of the architecture of signal transduction pathways, the spatiotemporal aspects were often impossible to resolve. Optogenetics, based on genetically encoded light-responsive proteins, has the potential to revolutionize manipulation of signal transduction processes. Light can be easily applied with highest precision and minimal invasiveness. This review focuses on examples of optogenetic systems which were generated and applied to manipulate non-neuronal mammalian signaling processes at various stages of signal transduction, from cell membrane through cytoplasm to nucleus. Further, the future of optogenetic signaling will be discussed.
870.

A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei.

blue VVD T. reesei Transgene expression
J Biotechnol, 2 Nov 2016 DOI: 10.1016/j.jbiotec.2016.11.003 Link to full text
Abstract: The filamentous fungi Trichoderma reesei is widely used in the production of cellulolytic enzymes and recombinant proteins. However, only moderate success has been achieved in expressing heterologous proteins in T. reesei. Light-dependent control of DNA transcription, and protein expression have been demonstrated in bacteria, fungi, and mammalian cells. In this study, light inducible transactivators, a "light-on" bidirectional promoter and a "light-off" promoter were constructed successfully in T. reesei for the first time. Our light inducible transactivators can homodimerize and bind to the upstream region of artificial promoters to activate or repress genes transcription. Additionally, we upgraded the light-inducible system to on-off system that can simultaneously control the expression of multiple heterologous proteins in T. reesei. Moreover, a native cellulase-free background for the expression of heterologous proteins was achieved by knocking out the genes involved in transcriptional regulation and encoding of cellulases: xyr1, cbh1, and cbh2. Our light-switchable system showed a very little background protein expression and robust activation in the blue light with significantly improved heterologous protein expression. We demonstrate that our light-switchable system has a potential application as an on/off "switch" that can simultaneously regulate the expression of multiple genes in T. reesei under native cellulase-free background.
871.

The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins.

blue cyan Fluorescent proteins LOV domains Review
Trends Biochem Sci, 1 Nov 2016 DOI: 10.1016/j.tibs.2016.09.010 Link to full text
Abstract: Over the past 20 years, protein engineering has been extensively used to improve and modify the fundamental properties of fluorescent proteins (FPs) with the goal of adapting them for a fantastic range of applications. FPs have been modified by a combination of rational design, structure-based mutagenesis, and countless cycles of directed evolution (gene diversification followed by selection of clones with desired properties) that have collectively pushed the properties to photophysical and biochemical extremes. In this review, we provide both a summary of the progress that has been made during the past two decades, and a broad overview of the current state of FP development and applications in mammalian systems.
872.

Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems.

blue red Magnets PhyB/PIF6 Cos-7 HEK293 HeLa Immediate control of second messengers
Sci Rep, 21 Oct 2016 DOI: 10.1038/srep35777 Link to full text
Abstract: Alpha subunits of heterotrimeric G proteins (Gα) are involved in a variety of cellular functions. Here we report an optogenetic strategy to spatially and temporally manipulate Gα in living cells. More specifically, we applied the blue light-induced dimerization system, known as the Magnet system, and an alternative red light-induced dimerization system consisting of Arabidopsis thaliana phytochrome B (PhyB) and phytochrome-interacting factor 6 (PIF6) to optically control the activation of two different classes of Gα (Gαq and Gαs). By utilizing this strategy, we demonstrate successful regulation of Ca(2+) and cAMP using light in mammalian cells. The present strategy is generally applicable to different kinds of Gα and could contribute to expanding possibilities of spatiotemporal regulation of Gα in mammalian cells.
873.

Engineering of temperature- and light-switchable Cas9 variants.

blue RsLOV E. coli in vitro
Nucleic Acids Res, 15 Oct 2016 DOI: 10.1093/nar/gkw930 Link to full text
Abstract: Sensory photoreceptors have enabled non-invasive and spatiotemporal control of numerous biological processes. Photoreceptor engineering has expanded the repertoire beyond natural receptors, but to date no generally applicable strategy exists towards constructing light-regulated protein actuators of arbitrary function. We hence explored whether the homodimeric Rhodobacter sphaeroides light-oxygen-voltage (LOV) domain (RsLOV) that dissociates upon blue-light exposure can confer light sensitivity onto effector proteins, via a mechanism of light-induced functional site release. We chose the RNA-guided programmable DNA endonuclease Cas9 as proof-of-principle effector, and constructed a comprehensive library of RsLOV inserted throughout the Cas9 protein. Screening with a high-throughput assay based on transcriptional repression in Escherichia coli yielded paRC9, a moderately light-activatable variant. As domain insertion can lead to protein destabilization, we also screened the library for temperature-sensitive variants and isolated tsRC9, a variant with robust activity at 29°C but negligible activity at 37°C. Biochemical assays confirmed temperature-dependent DNA cleavage and binding for tsRC9, but indicated that the light sensitivity of paRC9 is specific to the cellular setting. Using tsRC9, the first temperature-sensitive Cas9 variant, we demonstrate temperature-dependent transcriptional control over ectopic and endogenous genetic loci. Taken together, RsLOV can confer light sensitivity onto an unrelated effector; unexpectedly, the same LOV domain can also impart strong temperature sensitivity.
874.

A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.

blue CRY2/CIB1 Magnets CHO-K1 Cos-7 HEK293 HeLa mouse in vivo NIH/3T3
Nat Chem Biol, 10 Oct 2016 DOI: 10.1038/nchembio.2205 Link to full text
Abstract: Genome engineering techniques represented by the Cre-loxP recombination system have been used extensively for biomedical research. However, powerful and useful techniques for genome engineering that have high spatiotemporal precision remain elusive. Here we develop a highly efficient photoactivatable Cre recombinase (PA-Cre) to optogenetically control genome engineering in vivo. PA-Cre is based on the reassembly of split Cre fragments by light-inducible dimerization of the Magnet system. PA-Cre enables sharp induction (up to 320-fold) of DNA recombination and is efficiently activated even by low-intensity illumination (∼0.04 W m(-2)) or short periods of pulsed illumination (∼30 s). We demonstrate that PA-Cre allows for efficient DNA recombination in an internal organ of living mice through noninvasive external illumination using a LED light source. The present PA-Cre provides a powerful tool to greatly facilitate optogenetic genome engineering in vivo.
875.

Optogenetic Control of Protein Function: From Intracellular Processes to Tissue Morphogenesis.

blue red Cryptochromes LOV domains Phytochromes Review
Trends Cell Biol, 7 Oct 2016 DOI: 10.1016/j.tcb.2016.09.006 Link to full text
Abstract: Optogenetics is an emerging and powerful technique that allows the control of protein activity with light. The possibility of inhibiting or stimulating protein activity with the spatial and temporal precision of a pulse of laser light is opening new frontiers for the investigation of developmental pathways and cell biological bases underlying organismal development. With this powerful technique in hand, it will be possible to address old and novel questions about how cells, tissues, and organisms form. In this review, we focus on the applications of existing optogenetic tools for addressing issues in animal morphogenesis.
Submit a new publication to our database