Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 75 of 121 results
51.

Photoactivated Adenylyl Cyclases: Fundamental Properties and Applications.

blue violet BLUF domains LOV domains Phytochromes Review
Adv Exp Med Biol, 6 Jan 2021 DOI: 10.1007/978-981-15-8763-4_7 Link to full text
Abstract: Photoactivated adenylyl cyclase (PAC) was first discovered to be a sensor for photoavoidance in the flagellate Euglena gracilis. PAC is a flavoprotein that catalyzes the production of cAMP upon illumination with blue light, which enables us to optogenetically manipulate intracellular cAMP levels in various biological systems. Recent progress in genome sequencing has revealed several related proteins in bacteria and ameboflagellates. Among them, the PACs from sulfur bacterium Beggiatoa sp. and cyanobacterium Oscillatoria acuminata have been well characterized, including their crystalline structure. Although there have not been many reported optogenetic applications of PACs so far, they have the potential to be used in various fields within bioscience.
52.

Biphasic Response of Protein Kinase A to Cyclic Adenosine Monophosphate Triggers Distinct Epithelial Phenotypes.

blue bPAC (BlaC) MDCK Immediate control of second messengers
bioRxiv, 3 Nov 2020 DOI: 10.1101/747030 Link to full text
Abstract: Despite the large diversity of the proteins involved in cellular signaling, many intracellular signaling pathways converge onto one of only dozens of small molecule second messengers. Cyclic adenosine monophosphate (cAMP), one of these second messengers, is known to regulate activity of both Protein Kinase A (PKA) and the Extracellular Regulated Kinase (ERK), among other signaling pathways. In its role as an important cellular signaling hub, intracellular cAMP concentration has long been assumed to monotonically regulate its known effectors. Using an optogenetic tool that can introduce precise amounts of cAMP in MDCKI cells, we identify genes whose expression changes biphasically with monotonically increasing cAMP levels. By examining the behavior of PKA and ERK1/2 in the same dose regime, we find that these kinases also respond biphasically to increasing cAMP levels, with opposite phases. We reveal that this behavior results from an elaborate integration by PKA of many cellular signals triggered by cAMP. In addition to the direct activation of PKA, cAMP also modulates the activity of p38 and ERK, which then converge to inhibit PKA. These interactions and their ensuing biphasic PKA profile have important physiological repercussions, influencing the ability of MDCKI cells to proliferate and form acini. Our data, supported by computational modeling, synthesize a set of network interconnections involving PKA and other important signaling pathways into a model that demonstrates how cells can capitalize on signal integration to create a diverse set of responses to cAMP concentration and produce complex input-output relationships.
53.

The rise and shine of yeast optogenetics.

blue green near-infrared red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Yeast, 29 Oct 2020 DOI: 10.1002/yea.3529 Link to full text
Abstract: Optogenetics refers to the control of biological processes with light. The activation of cellular phenomena by defined wavelengths has several advantages compared to traditional chemically-inducible systems, such as spatiotemporal resolution, dose-response regulation, low cost and moderate toxic effects. Optogenetics has been successfully implemented in yeast, a remarkable biological platform that is not only a model organism for cellular and molecular biology studies, but also a microorganism with diverse biotechnological applications. In this review, we summarize the main optogenetic systems implemented in the budding yeast Saccharomyces cerevisiae, which allow orthogonal control (by light) of gene expression, protein subcellular localization, reconstitution of protein activity, or protein sequestration by oligomerization. Furthermore, we review the application of optogenetic systems in the control of metabolic pathways, heterologous protein production and flocculation. We then revise an example of a previously described yeast optogenetic switch, named FUN-LOV, which allows precise and strong activation of the target gene. Finally, we describe optogenetic systems that have not yet been implemented in yeast, which could therefore be used to expand the panel of available tools in this biological chassis. In conclusion, a wide repertoire of optogenetic systems can be used to address fundamental biological questions and broaden the biotechnological toolkit in yeast.
54.

SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity.

blue bPAC (BlaC) mouse hippocampal slices ND7/23 rat dentate gyrus granule neurons rat hippocampal neurons Neuronal activity control
J Neurochem, 22 Oct 2020 DOI: 10.1111/jnc.15210 Link to full text
Abstract: Optogenetic manipulations have transformed neuroscience in recent years. While sophisticated tools now exist for controlling the firing patterns of neurons, it remains challenging to optogenetically define the plasticity state of individual synapses. A variety of synapses in the mammalian brain express presynaptic long-term potentiation (LTP) upon elevation of presynaptic cyclic adenosine monophosphate (cAMP), but the molecular expression mechanisms as well as the impact of presynaptic LTP on network activity and behavior are not fully understood. In order to establish optogenetic control of presynaptic cAMP levels and thereby presynaptic potentiation, we developed synaptoPAC, a presynaptically targeted version of the photoactivated adenylyl cyclase bPAC. In cultures of hippocampal granule cells of Wistar rats, activation of synaptoPAC with blue light increased action potential-evoked transmission, an effect not seen in hippocampal cultures of non-granule cells. In acute brain slices of C57BL/6N mice, synaptoPAC activation immediately triggered a strong presynaptic potentiation at mossy fiber synapses in CA3, but not at Schaffer collateral synapses in CA1. Following light-triggered potentiation, mossy fiber transmission decreased within 20 min, but remained enhanced still after 30 min. The optogenetic potentiation altered the short-term plasticity dynamics of release, reminiscent of presynaptic LTP. Our work establishes synaptoPAC as an optogenetic tool that enables acute light-controlled potentiation of transmitter release at specific synapses in the brain, facilitating studies of the role of presynaptic potentiation in network function and animal behavior in an unprecedented manner. Read the Editorial Highlight for this article on page 270.
55.

Dual Activation of cAMP Production Through Photostimulation or Chemical Stimulation.

blue bPAC (BlaC) HC-1
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_14 Link to full text
Abstract: cAMP is a crucial mediator of multiple cell signaling pathways. This cyclic nucleotide requires strict spatiotemporal control for effective function. Light-activated proteins have become a powerful tool to study signaling kinetics due to having quick on/off rates and minimal off-target effects. The photoactivated adenylyl cyclase from Beggiatoa (bPAC) produces cAMP rapidly upon stimulation with blue light. However, light delivery is not always feasible, especially in vivo. Hence, we created a luminescence-activated cyclase by fusing bPAC with nanoluciferase (nLuc) to allow chemical activation of cAMP activity. This dual-activated adenylyl cyclase can be stimulated using short bursts of light or long-term chemical activation with furimazine and other related luciferins. Together these can be used to mimic transient, chronic, and oscillating patterns of cAMP signaling. Moreover, when coupled to compartment-specific targeting domains, these reagents provide a new powerful tool for cAMP spatiotemporal dynamic studies. Here, we describe detailed methods for working with bPAC-nLuc in mammalian cells, stimulating cAMP production with light and luciferins, and measuring total cAMP accumulation.
56.

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_2 Link to full text
Abstract: G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
57.

Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium.

blue red bPAC (BlaC) LAPD HEK293 mIMCD-3 Signaling cascade control Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Elife, 24 Jun 2020 DOI: 10.7554/elife.57907 Link to full text
Abstract: Compartmentalization of cellular signaling forms the molecular basis of cellular behavior. The primary cilium constitutes a subcellular compartment that orchestrates signal transduction independent from the cell body. Ciliary dysfunction causes severe diseases, termed ciliopathies. Analyzing ciliary signaling has been challenging due to the lack of tools investigate ciliary signaling. Here, we describe a nanobody-based targeting approach for optogenetic tools in mammalian cells and in vivo in zebrafish to specifically analyze ciliary signaling and function. Thereby, we overcome the loss of protein function observed after fusion to ciliary targeting sequences. We functionally localized modifiers of cAMP signaling, the photo-activated adenylate cyclase bPAC and the light-activated phosphodiesterase LAPD, and the cAMP biosensor mlCNBD-FRET to the cilium. Using this approach, we studied the contribution of spatial cAMP signaling in controlling cilia length. Combining optogenetics with nanobody-based targeting will pave the way to the molecular understanding of ciliary function in health and disease.
58.

Optogenetic Manipulation of Postsynaptic cAMP Using a Novel Transgenic Mouse Line Enables Synaptic Plasticity and Enhances Depolarization Following Tetanic Stimulation in the Hippocampal Dentate Gyrus.

blue bPAC (BlaC) mouse hippocampal slices Immediate control of second messengers Neuronal activity control
Front Neural Circuits, 3 Jun 2020 DOI: 10.3389/fncir.2020.00024 Link to full text
Abstract: cAMP is a positive regulator tightly involved in certain types of synaptic plasticity and related memory functions. However, its spatiotemporal roles at the synaptic and neural circuit levels remain elusive. Using a combination of a cAMP optogenetics approach and voltage-sensitive dye (VSD) imaging with electrophysiological recording, we define a novel capacity of postsynaptic cAMP in enabling dentate gyrus long-term potentiation (LTP) and depolarization in acutely prepared murine hippocampal slices. To manipulate cAMP levels at medial perforant path to granule neuron (MPP-DG) synapses by light, we generated transgenic (Tg) mice expressing photoactivatable adenylyl cyclase (PAC) in DG granule neurons. Using these Tg(CMV-Camk2a-RFP/bPAC)3Koka mice, we recorded field excitatory postsynaptic potentials (fEPSPs) from MPP-DG synapses and found that photoactivation of PAC during tetanic stimulation enabled synaptic potentiation that persisted for at least 30 min. This form of LTP was induced without the need for GABA receptor blockade that is typically required for inducing DG plasticity. The paired-pulse ratio (PPR) remained unchanged, indicating the cAMP-dependent LTP was likely postsynaptic. By employing fast fluorescent voltage-sensitive dye (VSD: di-4-ANEPPS) and fluorescence imaging, we found that photoactivation of the PAC actuator enhanced the intensity and extent of dentate gyrus depolarization triggered following tetanic stimulation. These results demonstrate that the elevation of cAMP in granule neurons is capable of rapidly enhancing synaptic strength and neuronal depolarization. The powerful actions of cAMP are consistent with this second messenger having a critical role in the regulation of synaptic function.
59.

Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools.

blue bPAC (BlaC) HeLa MDCK Signaling cascade control Immediate control of second messengers
ACS Sens, 26 Feb 2020 DOI: 10.1021/acssensors.9b01941 Link to full text
Abstract: Genetically encoded Förster resonance energy transfer (FRET)-based biosensors have been developed for the visualization of signaling molecule activities. Currently, most of them are comprised of cyan and yellow fluorescent proteins (CFP and YFP), precluding the use of multiple FRET biosensors within a single cell. Moreover, the FRET biosensors based on CFP and YFP are incompatible with the optogenetic tools that operate at blue light. To overcome these problems, here, we have developed FRET biosensors with red-shifted excitation and emission wavelengths. We chose mKOκ and mKate2 as the favorable donor and acceptor pair by calculating the Förster distance. By optimizing the order of fluorescent proteins and modulatory domains of the FRET biosensors, we developed a FRET biosensor backbone named "Booster". The performance of the protein kinase A (PKA) biosensor based on the Booster backbone (Booster-PKA) was comparable to that of AKAR3EV, a previously developed FRET biosensor comprising CFP and YFP. For the proof of concept, we first showed simultaneous monitoring of activities of two protein kinases with Booster-PKA and ERK FRET biosensors based on CFP and YFP. Second, we showed monitoring of PKA activation by Beggiatoa photoactivated adenylyl cyclase, an optogenetic generator of cyclic AMP. Finally, we presented PKA activity in living tissues of transgenic mice expressing Booster-PKA. Collectively, the results demonstrate the effectiveness and versatility of Booster biosensors as an imaging tool in vitro and in vivo.
60.

An optogenetic tool for induced protein stabilization based on the Phaeodactylum tricornutum aureochrome 1a LOV domain.

blue AtLOV2 bPAC (BlaC) PtAU1-LOV in vitro S. cerevisiae Immediate control of second messengers
J Mol Biol, 24 Feb 2020 DOI: 10.1016/j.jmb.2020.02.019 Link to full text
Abstract: Control of cellular events by optogenetic tools is a powerful approach to manipulate cellular functions in a minimally invasive manner. A common problem posed by the application of optogenetic tools is to tune the activity range to be physiologically relevant. Here, we characterized a photoreceptor of the light-oxygen-voltage domain family of Phaeodactylum tricornutum aureochrome 1a (AuLOV) as a tool for increasing protein stability under blue light conditions in budding yeast. Structural studies of AuLOVwt, the variants AuLOVM254 and AuLOVW349 revealed alternative dimer association modes for the dark state, which differ from previously reported AuLOV dark state structures. Rational design of AuLOV-dimer interface mutations resulted in an optimized optogenetic tool that we fused to the photoactivatable adenylyl cyclase from Beggiatoa sp.. This synergistic light-regulation approach using two photoreceptors resulted in an optimized, photoactivatable adenylyl cyclase with a cyclic AMP production activity that matches the physiological range of Saccharomyces cerevisiae. Overall, we enlarged the optogenetic toolbox for yeast and demonstrated the importance of fine-tuning the optogenetic tool activity for successful application in cells.
61.

Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events.

blue cyan red UV violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Cell Biol, 10 Feb 2020 DOI: 10.1016/j.ceb.2020.01.007 Link to full text
Abstract: Cells rely on a complex network of spatiotemporally regulated signaling activities to effectively transduce information from extracellular cues to intracellular machinery. To probe this activity architecture, researchers have developed an extensive molecular tool kit of fluorescent biosensors and optogenetic actuators capable of monitoring and manipulating various signaling activities with high spatiotemporal precision. The goal of this review is to provide readers with an overview of basic concepts and recent advances in the development and application of genetically encodable biosensors and optogenetic tools for understanding signaling activity.
62.

Role of cyclic nucleotides and their downstream signaling cascades in memory function: being at the right time at the right spot.

blue red BLUF domains LOV domains Phytochromes Review
Neurosci Biobehav Rev, 7 Feb 2020 DOI: 10.1016/j.neubiorev.2020.02.004 Link to full text
Abstract: A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
63.

Photoreaction Mechanisms of Flavoprotein Photoreceptors and Their Applications.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Adv Exp Med Biol, 6 Jan 2020 DOI: 10.1007/978-981-15-8763-4_11 Link to full text
Abstract: Three classes of flavoprotein photoreceptors, cryptochromes (CRYs), light-oxygen-voltage (LOV)-domain proteins, and blue light using FAD (BLUF)-domain proteins, have been identified that control various physiological processes in multiple organisms. Accordingly, signaling activities of photoreceptors have been intensively studied and the related mechanisms have been exploited in numerous optogenetic tools. Herein, we summarize the current understanding of photoactivation mechanisms of the flavoprotein photoreceptors and review their applications.
64.

The C-terminal region affects the activity of photoactivated adenylyl cyclase from Oscillatoria acuminata.

blue BLUF domains Background
Sci Rep, 30 Dec 2019 DOI: 10.1038/s41598-019-56721-3 Link to full text
Abstract: Photoactivated adenylyl cyclase (PAC) is a unique protein that, upon blue light exposure, catalyzes cAMP production. The crystal structures of two PACs, from Oscillatoria acuminata (OaPAC) and Beggiatoa sp. (bPAC), have been solved, and they show a high degree of similarity. However, the photoactivity of OaPAC is much lower than that of bPAC, and the regulatory mechanism of PAC photoactivity, which induces the difference in activity between OaPAC and bPAC, has not yet been clarified. Here, we investigated the role of the C-terminal region in OaPAC, the length of which is the only notable difference from bPAC. We found that the photoactivity of OaPAC was inversely proportional to the C-terminal length. However, the deletion of more than nine amino acids did not further increase the activity, indicating that the nine amino acids at the C-terminal critically affect the photoactivity. Besides, absorption spectral features of light-sensing domains (BLUF domains) of the C-terminal deletion mutants showed similar light-dependent spectral shifts as in WT, indicating that the C-terminal region influences the activity without interacting with the BLUF domain. The study characterizes new PAC mutants with modified photoactivities, which could be useful as optogenetics tools.
65.

Primary Cilia Signaling Promotes Axonal Tract Development and Is Disrupted in Joubert Syndrome-Related Disorders Models.

blue bPAC (BlaC) CRY2/CIB1 primary mouse deep cerebellar nuclei neurons Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Dev Cell, 16 Dec 2019 DOI: 10.1016/j.devcel.2019.11.005 Link to full text
Abstract: Appropriate axonal growth and connectivity are essential for functional wiring of the brain. Joubert syndrome-related disorders (JSRD), a group of ciliopathies in which mutations disrupt primary cilia function, are characterized by axonal tract malformations. However, little is known about how cilia-driven signaling regulates axonal growth and connectivity. We demonstrate that the deletion of related JSRD genes, Arl13b and Inpp5e, in projection neurons leads to de-fasciculated and misoriented axonal tracts. Arl13b deletion disrupts the function of its downstream effector, Inpp5e, and deregulates ciliary-PI3K/AKT signaling. Chemogenetic activation of ciliary GPCR signaling and cilia-specific optogenetic modulation of downstream second messenger cascades (PI3K, AKT, and AC3) commonly regulated by ciliary signaling receptors induce rapid changes in axonal dynamics. Further, Arl13b deletion leads to changes in transcriptional landscape associated with dysregulated PI3K/AKT signaling. These data suggest that ciliary signaling acts to modulate axonal connectivity and that impaired primary cilia signaling underlies axonal tract defects in JSRD.
66.

Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.

blue red violet BLUF domains Cryptochromes LOV domains Phytochromes Review
Biochem Soc Trans, 14 Nov 2019 DOI: 10.1042/bst20190246 Link to full text
Abstract: The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
67.

Amelioration of Diabetes in a Murine Model upon Transplantation of Pancreatic β-Cells with Optogenetic Control of Cyclic Adenosine Monophosphate.

blue bPAC (BlaC) MIN6 Immediate control of second messengers
ACS Synth Biol, 16 Sep 2019 DOI: 10.1021/acssynbio.9b00262 Link to full text
Abstract: Pharmacological augmentation of glucose-stimulated insulin secretion (GSIS), for example, to overcome insulin resistance in type 2 diabetes is linked to suboptimal regulation of blood sugar. Cultured β-cells and islets expressing a photoactivatable adenylyl cyclase (PAC) are amenable to GSIS potentiation with light. However, whether PAC-mediated enhancement of GSIS can improve the diabetic state remains unknown. To this end, β-cells were engineered with stable PAC expression that led to over 2-fold greater GSIS upon exposure to blue light while there were no changes in the absence of glucose. Moreover, the rate of oxygen consumption was unaltered despite the photoinduced elevation of GSIS. Transplantation of these cells into streptozotocin-treated mice resulted in improved glucose tolerance, lower hyperglycemia, and higher plasma insulin when subjected to illumination. Embedding optogenetic networks in β-cells for physiologically relevant control of GSIS will enable novel solutions potentially overcoming the shortcomings of current treatments for diabetes.
68.

Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.

blue bPAC (BlaC) HEK293T MVD7 Signaling cascade control Immediate control of second messengers
Cell Chem Biol, 23 Jul 2019 DOI: 10.1016/j.chembiol.2019.07.004 Link to full text
Abstract: Because small-molecule activators of adenylyl cyclases (AC) affect ACs cell-wide, it is challenging to explore the signaling consequences of AC activity emanating from specific intracellular compartments. We explored this issue using a series of engineered, optogenetic, spatially restricted, photoactivable adenylyl cyclases (PACs) positioned at the plasma membrane (PM), the outer mitochondrial membrane (OMM), and the nucleus (Nu). The biochemical consequences of brief photostimulation of PAC is primarily limited to the intracellular site occupied by the PAC. By contrast, sustained photostimulation results in distal cAMP signaling. Prolonged cAMP generation at the OMM profoundly stimulates nuclear protein kinase (PKA) activity. We have found that phosphodiesterases 3 (OMM and PM) and 4 (PM) modulate proximal (local) cAMP-triggered activity, whereas phosphodiesterase 4 regulates distal cAMP activity as well as the migration of PKA's catalytic subunit into the nucleus.
69.

Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact Caenorhabditis elegans.

blue BlgC bPAC (BlaC) C. elegans in vivo Immediate control of second messengers
Genetics, 22 Jul 2019 DOI: 10.1534/genetics.119.302392 Link to full text
Abstract: cGMP plays a role in sensory signaling and plasticity by regulating ion channels, phosphodiesterases and kinases. Studies that primarily used genetic and biochemical tools suggest that cGMP is spatiotemporally regulated in multiple sensory modalities. FRET- and GFP-based cGMP sensors were developed to visualize cGMP in primary cell culture and Caenorhabditis elegans to corroborate these findings. While a FRET-based sensor has been used in an intact animal to visualize cGMP, the requirement of a multiple emission system limits its ability to be used on its own as well as with other fluorophores. Here, we demonstrate that a C. elegans codon-optimized version of the cpEGFP-based cGMP sensor FlincG3 can be used to visualize rapidly changing cGMP levels in living, behaving C. elegans We coexpressed FlincG3 with the blue light-activated guanylyl cyclases BeCyclOp and bPGC in body wall muscles and found that the rate of change in FlincG3 fluorescence correlated with the rate of cGMP production by each cyclase. Furthermore, we show that FlincG3 responds to cultivation temperature, NaCl concentration changes and sodium dodecyl sulfate in the sensory neurons AFD, ASEL/R and PHB, respectively. Intriguingly, FlincG3 fluorescence in ASEL and ASER decreased in response to a NaCl concentration upstep and downstep, respectively, which is opposite in sign to the coexpressed calcium sensor jRGECO1a and previously published calcium recordings. These results illustrate that FlincG3 can be used to report rapidly changing cGMP levels in an intact animal and that the reporter can potentially reveal unexpected spatiotemporal landscapes of cGMP in response to stimuli.
70.

Cyclic Nucleotide-Specific Optogenetics Highlights Compartmentalization of the Sperm Flagellum into cAMP Microdomains.

blue red bPAC (BlaC) LAPD HEK293 mouse sperm cells Signaling cascade control Control of cytoskeleton / cell motility / cell shape Immediate control of second messengers
Cells, 27 Jun 2019 DOI: 10.3390/cells8070648 Link to full text
Abstract: Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3',5'-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.
71.

Regulation of signaling proteins in the brain by light.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Prog Neurobiol, 11 Jun 2019 DOI: 10.1016/j.pneurobio.2019.101638 Link to full text
Abstract: In order to study the role of signaling proteins, such as kinases and GTPases, in brain functions it is necessary to control their activity at the appropriate spatiotemporal resolution and to examine the cellular and behavioral effects of such changes in activity. Reduced spatiotemporal resolution in the regulation of these proteins activity will impede the ability to understand the proteins normal functions as longer modification of their activity in non-normal locations could lead to effects different from their natural functions. To control intracellular signaling proteins at the highest temporal resolution recent innovative optogenetic approaches were developed to allow the control of photoactivable signaling proteins activity by light. These photoactivatable proteins can be activated in selected cell population in brain and in specific subcellular compartments. Minimal-invasive tools are being developed to photoactivate these proteins for study and therapy. Together these techniques afford an unprecedented spatiotemporal control of signaling proteins activity to unveil the function of brain proteins with high accuracy in behaving animals. As dysfunctional signaling proteins are involved in brain diseases, the optogenetic technique has also the potential to be used as a tool to treat brain diseases.
72.

Characterization and engineering of photoactivated adenylyl cyclases.

blue red BLUF domains Phytochromes Background
Biol Chem, 9 Jan 2019 DOI: 10.1515/hsz-2018-0375 Link to full text
Abstract: Cyclic nucleoside monophosphates (cNMP) serve as universal second messengers in signal transduction across prokaryotes and eukaryotes. As signaling often relies on transiently formed microdomains of elevated second messenger concentration, means to precisely perturb the spatiotemporal dynamics of cNMPs are uniquely poised for the interrogation of the underlying physiological processes. Optogenetics appears particularly suited as it affords light-dependent, accurate control in time and space of diverse cellular processes. Several sensory photoreceptors function as photoactivated adenylyl cyclases (PAC) and hence serve as light-regulated actuators for the control of intracellular levels of 3', 5'-cyclic adenosine monophosphate. To characterize PACs and to refine their properties, we devised a test bed for the facile analysis of these photoreceptors. Cyclase activity is monitored in bacterial cells via expression of a fluorescent reporter, and programmable illumination allows the rapid exploration of multiple lighting regimes. We thus probed two PACs responding to blue and red light, respectively, and observed significant dark activity for both. We next engineered derivatives of the red-light-sensitive PAC with altered responses to light, with one variant, denoted DdPAC, showing enhanced response to light. These PAC variants stand to enrich the optogenetic toolkit and thus facilitate the detailed analysis of cNMP metabolism and signaling.
73.

Luminescence-activated nucleotide cyclase regulates spatial and temporal cAMP synthesis.

blue bPAC (BlaC) HC-1 HEK293 PCCL3 Cell cycle control Immediate control of second messengers
J Biol Chem, 17 Dec 2018 DOI: 10.1074/jbc.ac118.004905 Link to full text
Abstract: cAMP is a ubiquitous second messenger that regulates cellular proliferation, differentiation, attachment, migration, and several other processes. It has become increasingly evident that tight regulation of cAMP accumulation and localization confers divergent yet specific signaling to downstream pathways. Currently, few tools are available that have sufficient spatial and temporal resolution to study location-biased cAMP signaling. Here, we introduce a new fusion protein consisting of a light-activated adenylyl cyclase (bPAC) and luciferase (nLuc). This construct allows dual activation of cAMP production through temporally precise photostimulation or chronic chemical stimulation that can be fined-tuned to mimic physiological levels and duration of cAMP synthesis to trigger downstream events. By targeting this construct to different compartments, we show that cAMP produced in the cytosol and nucleus stimulates proliferation in thyroid cells. The bPAC-nLuc fusion construct adds a new reagent to the available toolkit to study cAMP-regulated processes in living cells.
74.

Potassium channel-based optogenetic silencing.

blue bPAC (BlaC) HEK293 mouse hippocampal slices mouse in vivo ND7/23 primary mouse hippocampal neurons rabbit cardiomyocytes zebrafish in vivo Immediate control of second messengers Neuronal activity control
Nat Commun, 5 Nov 2018 DOI: 10.1038/s41467-018-07038-8 Link to full text
Abstract: Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.
75.

Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition.

blue bPAC (BlaC) D. melanogaster in vivo rat hippocampal neurons Xenopus oocytes Immediate control of second messengers Neuronal activity control
Front Neurosci, 2 Oct 2018 DOI: 10.3389/fnins.2018.00643 Link to full text
Abstract: Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.
Submit a new publication to our database