Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 75 of 115 results
51.

Optogenetic approaches to investigate spatiotemporal signaling during development.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Top Dev Biol, 18 Dec 2019 DOI: 10.1016/bs.ctdb.2019.11.009 Link to full text
Abstract: Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
52.

SapTrap Assembly of Caenorhabditis elegans MosSCI Transgene Vectors.

blue TULIP C. elegans in vivo
G3 (Bethesda), 17 Dec 2019 DOI: 10.1534/g3.119.400822 Link to full text
Abstract: The Mos1-mediated Single-Copy Insertion (MosSCI) method is widely used to establish stable Caenorhabditis elegans transgenic strains. Cloning MosSCI targeting plasmids can be cumbersome because it requires assembling multiple genetic elements including a promoter, a 3'UTR and gene fragments. Recently, Schwartz and Jorgensen developed the SapTrap method for the one-step assembly of plasmids containing components of the CRISPR/Cas9 system for C. elegans Here, we report on the adaptation of the SapTrap method for the efficient and modular assembly of a promoter, 3'UTR and either 2 or 3 gene fragments in a MosSCI targeting vector in a single reaction. We generated a toolkit that includes several fluorescent tags, components of the ePDZ/LOV optogenetic system and regulatory elements that control gene expression in the C. elegans germline. As a proof of principle, we generated a collection of strains that fluorescently label the endoplasmic reticulum and mitochondria in the hermaphrodite germline and that enable the light-stimulated recruitment of mitochondria to centrosomes in the one-cell worm embryo. The method described here offers a flexible and efficient method for assembly of custom MosSCI targeting vectors.
53.

Manipulating the Patterns of Mechanical Forces That Shape Multicellular Tissues.

blue Cryptochromes LOV domains Review
Physiology (Bethesda), 1 Nov 2019 DOI: 10.1152/physiol.00018.2019 Link to full text
Abstract: During embryonic development, spatial and temporal patterns of mechanical forces help to transform unstructured groups of cells into complex, functional tissue architectures. Here, we review emerging approaches to manipulate these patterns of forces to investigate the mechanical mechanisms that shape multicellular tissues, with a focus on recent experimental studies of epithelial tissue sheets in the embryo of the model organism Drosophila melanogaster.
54.

Principles and applications of optogenetics in developmental biology.

blue red Cryptochromes LOV domains Phytochromes Review
Development, 22 Oct 2019 DOI: 10.1242/dev.175067 Link to full text
Abstract: The development of multicellular organisms is controlled by highly dynamic molecular and cellular processes organized in spatially restricted patterns. Recent advances in optogenetics are allowing protein function to be controlled with the precision of a pulse of laser light in vivo, providing a powerful new tool to perturb developmental processes at a wide range of spatiotemporal scales. In this Primer, we describe the most commonly used optogenetic tools, their application in developmental biology and in the nascent field of synthetic morphogenesis.
55.

Optogenetics sheds new light on tissue engineering and regenerative medicine.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Biomaterials, 16 Oct 2019 DOI: 10.1016/j.biomaterials.2019.119546 Link to full text
Abstract: Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
56.

Mechanosensitive junction remodelling promotes robust epithelial morphogenesis.

blue TULIP Caco-2 Control of cytoskeleton / cell motility / cell shape
Lancet Diabetes Endocrinol, 28 Sep 2019 DOI: 10.1016/j.bpj.2019.09.027 Link to full text
Abstract: Morphogenesis of epithelial tissues requires tight spatiotemporal coordination of cell shape changes. In vivo, many tissue-scale shape changes are driven by pulsatile contractions of intercellular junctions, which are rectified to produce irreversible deformations. The functional role of this pulsatory ratchet and its mechanistic basis remain unknown. Here we combine theory and biophysical experiments to show that mechanosensitive tension remodelling of epithelial cell junctions promotes robust epithelial shape changes via ratcheting. Using optogenetic control of actomyosin contractility, we find that epithelial junctions show elastic behaviour under low contractile stress, returning to their original lengths after contraction, but undergo irreversible deformation under higher magnitudes of contractile stress. Existing vertex-based models for the epithelium are unable to capture these results, with cell junctions displaying purely elastic or fluid-like behaviours, depending on the choice of model parameters. To describe the experimental results, we propose a modified vertex model with two essential ingredients for junction mechanics: thresholded tension remodelling and continuous strain relaxation. First, a critical strain threshold for tension remodelling triggers irreversible junction length changes for sufficiently strong contractions, making the system robust to small fluctuations in contractile activity. Second, continuous strain relaxation allows for mechanical memory removal, enabling frequency-dependent modulation of cell shape changes via mechanical ratcheting. Taken together, the combination of mechanosensitive tension remodelling and junctional strain relaxation provides a robust mechanism for large-scale morphogenesis.
57.

Light-induced dimerization approaches to control cellular processes.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chemistry, 15 Jul 2019 DOI: 10.1002/chem.201900562 Link to full text
Abstract: Light-inducible approaches provide means to control biological systems with spatial and temporal resolution that is unmatched by traditional genetic perturbations. Recent developments of optogenetic and chemo-optogenetic systems for induced proximity in cells facilitate rapid and reversible manipulation of highly dynamic cellular processes and have become valuable tools in diverse biological applications. The new expansions of the toolbox facilitate control of signal transduction, genome editing, 'painting' patterns of active molecules onto cellular membranes and light-induced cell cycle control. A combination of light- and chemically induced dimerization approaches has also seen interesting progress. Here we provide an overview of the optogenetic systems and the emerging chemo-optogenetic systems, and discuss recent applications in tackling complex biological problems.
58.

Regulation of signaling proteins in the brain by light.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Prog Neurobiol, 11 Jun 2019 DOI: 10.1016/j.pneurobio.2019.101638 Link to full text
Abstract: In order to study the role of signaling proteins, such as kinases and GTPases, in brain functions it is necessary to control their activity at the appropriate spatiotemporal resolution and to examine the cellular and behavioral effects of such changes in activity. Reduced spatiotemporal resolution in the regulation of these proteins activity will impede the ability to understand the proteins normal functions as longer modification of their activity in non-normal locations could lead to effects different from their natural functions. To control intracellular signaling proteins at the highest temporal resolution recent innovative optogenetic approaches were developed to allow the control of photoactivable signaling proteins activity by light. These photoactivatable proteins can be activated in selected cell population in brain and in specific subcellular compartments. Minimal-invasive tools are being developed to photoactivate these proteins for study and therapy. Together these techniques afford an unprecedented spatiotemporal control of signaling proteins activity to unveil the function of brain proteins with high accuracy in behaving animals. As dysfunctional signaling proteins are involved in brain diseases, the optogenetic technique has also the potential to be used as a tool to treat brain diseases.
59.

Optically inducible membrane recruitment and signaling systems.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Struct Biol, 15 Mar 2019 DOI: 10.1016/j.sbi.2019.01.017 Link to full text
Abstract: Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
60.

Neurotrophin receptor tyrosine kinases regulated with near-infrared light.

blue red DrBphP TULIP CHO HeLa mouse in vivo NIH/3T3 PC6-3 SH-SY5Y U-87 MG Signaling cascade control Multichromatic
Nat Commun, 8 Mar 2019 DOI: 10.1038/s41467-019-08988-3 Link to full text
Abstract: Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
61.

Photodimerization systems for regulating protein-protein interactions with light.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 25 Feb 2019 DOI: 10.1016/j.sbi.2019.01.021 Link to full text
Abstract: Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
62.

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.

blue cyan red Cryptochromes FKF1/G1 Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 14 Dec 2018 DOI: 10.3390/ijms19124052 Link to full text
Abstract: Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
63.

Guided by light: optogenetic control of microtubule gliding assays.

blue TULIP in vitro Extracellular optogenetics
Nano Lett, 19 Nov 2018 DOI: 10.1021/acs.nanolett.8b03011 Link to full text
Abstract: Force generation by molecular motors drives biological processes such as asymmetric cell division and cell migration. Microtubule gliding assays, in which surface-immobilized motor proteins drive microtubule propulsion, are widely used to study basic motor properties as well as the collective behavior of active self-organized systems. Additionally, these assays can be employed for nanotechnological applications such as analyte detection, bio-computation and mechanical sensing. While such assays allow tight control over the experimental conditions, spatiotemporal control of force generation has remained underdeveloped. Here we use light-inducible protein-protein interactions to recruit molecular motors to the surface to control microtubule gliding activity in vitro. We show that using these light-inducible interactions, proteins can be recruited to the surface in patterns, reaching a ~5-fold enrichment within 6 seconds upon illumination. Subsequently, proteins are released with a half-life of 13 seconds when the illumination is stopped. We furthermore demonstrate that light-controlled kinesin recruitment results in reversible activation of microtubule gliding along the surface, enabling efficient control over local microtubule motility. Our approach to locally control force generation offers a way to study the effects of non-uniform pulling forces on different microtubule arrays and also provides novel strategies for local control in nanotechnological applications.
64.

Mitotic Spindle: Illuminating Spindle Positioning with a Biological Lightsaber.

blue LOV domains Review
Curr Biol, 19 Nov 2018 DOI: 10.1016/j.cub.2018.09.047 Link to full text
Abstract: In metazoans, positioning of the mitotic spindle is controlled by the microtubule-dependent motor protein dynein, which associates with the cell cortex. Using optogenetic tools, two new studies examine how the levels and activity of dynein are regulated at the cortex to ensure proper positioning of the mitotic spindle.
65.

Bringing Light to Transcription: The Optogenetics Repertoire.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Front Genet, 2 Nov 2018 DOI: 10.3389/fgene.2018.00518 Link to full text
Abstract: The ability to manipulate expression of exogenous genes in particular regions of living organisms has profoundly transformed the way we study biomolecular processes involved in both normal development and disease. Unfortunately, most of the classical inducible systems lack fine spatial and temporal accuracy, thereby limiting the study of molecular events that strongly depend on time, duration of activation, or cellular localization. By exploiting genetically engineered photo sensing proteins that respond to specific wavelengths, we can now provide acute control of numerous molecular activities with unprecedented precision. In this review, we present a comprehensive breakdown of all of the current optogenetic systems adapted to regulate gene expression in both unicellular and multicellular organisms. We focus on the advantages and disadvantages of these different tools and discuss current and future challenges in the successful translation to more complex organisms.
66.

Adherens junction-associated pores mediate the intercellular transport of endosomes and cytoplasmic proteins.

blue TULIP D. melanogaster in vivo Control of vesicular transport
Biochem Biophys Res Commun, 2 Oct 2018 DOI: 10.1016/j.bbrc.2018.09.129 Link to full text
Abstract: Intercellular endosomes (IEs) are endocytosed vesicles shuttled through the adherens junctions (AJs) between two neighboring epidermal cells during Drosophila dorsal closure. The cell-to-cell transport of IEs requires DE-cadherin (DE-cad), microtubules (MTs) and kinesin. However, the mechanisms by which IEs can be transported through the AJs are unknown. Here, we demonstrate the presence of AJ-associated pores with MTs traversing through the pores. Live imaging allows direct visualization of IEs being transported through the AJ-associated pores. By using an optogenetic dimerization system, we observe that the dimerized IE-kinesin complexes move across AJs into the neighboring cell. The AJ-associated pores also allow intercellular movement of soluble proteins. Importantly, most epidermal cells form dorsoventral-oriented two-cell syncytia. Together, we present a model in which an AJ-associated pore mediates the intercellular transport of IEs and proteins between two cells in direct contact.
67.

Light‐Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Sci, 30 Sep 2018 DOI: 10.1002/advs.201800952 Link to full text
Abstract: The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology‐inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light‐controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non‐neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light‐sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light‐controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
68.

Optogenetic dissection of mitotic spindle positioning in vivo.

blue TULIP C. elegans in vivo Control of cytoskeleton / cell motility / cell shape Cell cycle control
Elife, 15 Aug 2018 DOI: 10.7554/elife.38198 Link to full text
Abstract: The position of the mitotic spindle determines the plane of cell cleavage, and thereby daughter cell location, size, and content. Spindle positioning is driven by dynein-mediated pulling forces exerted on astral microtubules, which requires an evolutionarily conserved complex of Gα-GDP, GPR-1/2Pins/LGN, and LIN-5Mud/NuMA proteins. To examine individual functions of the complex components, we developed a genetic strategy for light-controlled localization of endogenous proteins in C. elegans embryos. By replacing Gα and GPR-1/2 with a light-inducible membrane anchor, we demonstrate that Gα-GDP, Gα-GTP, and GPR-1/2 are not required for pulling-force generation. In the absence of Gα and GPR-1/2, cortical recruitment of LIN-5, but not dynein itself, induced high pulling forces. The light-controlled localization of LIN-5 overruled normal cell-cycle and polarity regulation and provided experimental control over the spindle and cell-cleavage plane. Our results define Gα∙GDP-GPR-1/2 Pins/LGN as a regulatable membrane anchor, and LIN-5Mud/NuMA as a potent activator of dynein-dependent spindle-positioning forces.
69.

A compendium of chemical and genetic approaches to light-regulated gene transcription.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Crit Rev Biochem Mol Biol, 24 Jul 2018 DOI: 10.1080/10409238.2018.1487382 Link to full text
Abstract: On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
70.

Blue-Light Receptors for Optogenetics.

blue red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chem Rev, 9 Jul 2018 DOI: 10.1021/acs.chemrev.8b00163 Link to full text
Abstract: Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
71.

Controlling Cells with Light and LOV.

blue AtLOV LOV domains Review
Adv Biosyst, 2 Jul 2018 DOI: 10.1002/adbi.201800098 Link to full text
Abstract: Optogenetics is a powerful method for studying dynamic processes in living cells and has advanced cell biology research over the recent past. Key to the successful application of optogenetics is the careful design of the light‐sensing module, typically employing a natural or engineered photoreceptor that links the exogenous light input to the cellular process under investigation. Light–oxygen–voltage (LOV) domains, a highly diverse class of small blue light sensors, have proven to be particularly versatile for engineering optogenetic input modules. These can function via diverse modalities, including inducible allostery, protein recruitment, dimerization, or dissociation. This study reviews recent advances in the development of LOV domain‐based optogenetic tools and their application for studying and controlling selected cellular functions. Focusing on the widely employed LOV2 domain from Avena sativa phototropin‐1, this review highlights the broad spectrum of engineering opportunities that can be explored to achieve customized optogenetic regulation. Finally, major bottlenecks in the development of optogenetic methods are discussed and strategies to overcome these with recent synthetic biology approaches are pointed out.
72.

An Optogenetic approach to control protein localization during embryogenesis of the sea urchin.

blue TULIP sea urchin in vivo Developmental processes
Dev Biol, 26 Jun 2018 DOI: 10.1016/j.ydbio.2018.06.015 Link to full text
Abstract: Light inducible protein-protein interactions have been used to manipulate protein localization and function in the cell with utmost spatial and temporal precision. In this technical report, we use a recently developed optogenetic approach to manipulate protein localization in the developing sea urchin embryo. A photosensitive LOV domain from Avena sativa phototropin1 cages a small peptide that binds the engineered PDZ domain (ePDZ) upon blue light irradiation. Using this system, mCherry tagged proteins fused with the LOV domain were recruited to ectopic sub-cellular regions such as the membrane, microtubules, or actin by GFP tagged proteins fused with the ePDZ domain upon blue light irradiation within 1~3 minutes in the sea urchin embryo. The efficiency and speed of recruitment of each protein to its respective subcellular region appeared to be dependent on the power and duration of laser irradiation, as well as the respective level of affinity to the tagged location. Controlled laser irradiation allowed partial recruitment of the spindle to the membrane, and resulted in cell blebbing. Vasa, a cell cycle and germline factor that localizes on the spindle and enriches in the micromeres at 8-16 cell stage was recruited to ectopic sites, preventing normal enrichment. Continuous blue light activation with a regular blue aquarium light over two days of culture successfully induced LOV-ePDZ binding in the developing embryos, resulting in continued ectopic recruitment of Vasa and failure in gastrulation at Day 2. Although some cytotoxicity was observed with prolonged blue light irradiation, this optogenetic system provides a promising approach to test the sub-cellular activities of developmental factors, as well as to alter protein localization and development during embryogenesis.
73.

LOV Domains in the Design of Photoresponsive Enzymes.

blue LOV domains Review
ACS Chem Biol, 15 Jun 2018 DOI: 10.1021/acschembio.8b00159 Link to full text
Abstract: In nature, a multitude of mechanisms have emerged for regulating biological processes and, specifically, protein activity. Light as a natural regulatory element is of outstanding interest for studying and modulating protein activity because it can be precisely applied with regard to a site of action, instant of time, or intensity. Naturally occuring photoresponsive proteins, predominantly those containing a light-oxygen-voltage (LOV) domain, have been characterized structurally and mechanistically and also conjugated to various proteins of interest. Immediate advantages of these new photoresponsive proteins such as genetic encoding, no requirement of chemical modification, and reversibility are paid by difficulties in predicting the envisaged activity or type and site of domain fusion. In this article, we summarize recent advances and give a survey on currently available design concepts for engineering photoswitchable proteins.
74.

Engaging myosin VI tunes motility, morphology, and identity in endocytosis.

blue TULIP HeLa Organelle manipulation
Traffic, 4 Jun 2018 DOI: 10.1111/tra.12583 Link to full text
Abstract: While unconventional myosins interact with different stages of the endocytic pathway, they are ascribed a transport function that is secondary to the protein complexes that control organelle identity. Endosomes are subject to a dynamic, continuous flux of proteins that control their characteristic properties, including their motility within the cell. Efforts to describe the changes in identity of this compartment have largely focused on the adaptors present on the compartment and not on the motile properties of the compartment itself. In this study, we use a combination of optogenetic and chemical-dimerization strategies to target exogenous myosin VI to early endosomes, and probe its influence on organelle motility, morphology, and identity. Our analysis across time scales suggests a model wherein the artificial engagement of myosin VI motility on early endosomes restricts microtubule-based motion, followed by morphological changes characterized by the rapid condensation and disintegration of organelles, ultimately leading to the enhanced overlap of markers that demarcate endosomal compartments. Together, our findings show that synthetic engagement of myosin VI motility is sufficient to alter organelle homeostasis in the endocytic pathway. This article is protected by copyright. All rights reserved.
75.

Optogenetics: A Primer for Chemists.

blue green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chembiochem, 19 Apr 2018 DOI: 10.1002/cbic.201800013 Link to full text
Abstract: The field of optogenetics uses genetically encoded, light-responsive proteins to control physiological processes. This technology has been hailed as the one of the ten big ideas in brain science in the past decade,[1] the breakthrough of the decade,[2] and the method of the year in 2010[3] and again in 2014[4]. The excitement evidenced by these proclamations is confirmed by a couple of impressive numbers. The term "optogenetics" was coined in 2006.[5] As of December 2017, "optogenetics" is found in the title or abstract of almost 1600 currently funded National Institutes of Health grants. In addition, nearly 600 reviews on optogenetics have appeared since 2006, which averages out to approximately one review per week! However, in spite of these impressive numbers, the potential applications and implications of optogenetics are not even close to being fully realized. This is due, in large part, to the challenges associated with the design of optogenetic analogs of endogenous proteins. This review is written from a chemist's perspective, with a focus on the molecular strategies that have been developed for the construction of optogenetic proteins.
Submit a new publication to our database