Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 51 - 75 of 176 results
51.

Plant optogenetics: Applications and perspectives.

blue cyan green near-infrared red UV Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Plant Biol, 30 Jun 2022 DOI: 10.1016/j.pbi.2022.102256 Link to full text
Abstract: To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
52.

Optogenetics for transcriptional programming and genetic engineering.

blue cyan near-infrared red UV violet Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Genet, 20 Jun 2022 DOI: 10.1016/j.tig.2022.05.014 Link to full text
Abstract: Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
53.

Optogenetic technologies in translational cancer research.

blue cyan green near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 9 Jun 2022 DOI: 10.1016/j.biotechadv.2022.108005 Link to full text
Abstract: Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
54.

A Single-Component Blue Light-Induced System Based on EL222 in Yarrowia lipolytica.

blue EL222 Y. lipolytica Transgene expression
Int J Mol Sci, 6 Jun 2022 DOI: 10.3390/ijms23116344 Link to full text
Abstract: Optogenetics has the advantages of a fast response time, reversibility, and high spatial and temporal resolution, which make it desirable in the metabolic engineering of chassis cells. In this study, a light-induced expression system of Yarrowia lipolytica was constructed, which successfully achieved the synthesis and functional verification of Bleomycin resistance protein (BleoR). The core of the blue light-induced system, the light-responsive element (TF), is constructed based on the blue photosensitive protein EL222 and the transcription activator VP16. The results show that the light-induced sensor based on TF, upstream activation sequence (C120)5, and minimal promoter CYC102 can respond to blue light and initiate the expression of GFPMut3 report gene. With four copies of the responsive promoter and reporter gene assembled, they can produce a 128.5-fold higher fluorescent signal than that under dark conditions after 8 h of induction. The effects of light dose and periodicity on this system were investigated, which proved that the system has good spatial and temporal controllability. On this basis, the light-controlled system was used for the synthesis of BleoR to realize the expression and verification of functional protein. These results demonstrated that this system has the potential for the transcriptional regulation of target genes, construction of large-scale synthetic networks, and overproduction of the desired product.
55.

Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs.

blue EL222 E. coli Transgene expression Cell death
Biomaterials, 5 Jun 2022 DOI: 10.1016/j.biomaterials.2022.121619 Link to full text
Abstract: Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.
56.

The expanding role of split protein complementation in opsin-free optogenetics.

blue green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Pharmacol, 21 May 2022 DOI: 10.1016/j.coph.2022.102236 Link to full text
Abstract: A comprehensive understanding of signaling mechanisms helps interpret fundamental biological processes and restore cell behavior from pathological conditions. Signaling outcome depends not only on the activity of each signaling component but also on their dynamic interaction in time and space, which remains challenging to probe by biochemical and cell-based assays. Opsin-based optogenetics has transformed neural science research with its spatiotemporal modulation of the activity of excitable cells. Motivated by this advantage, opsin-free optogenetics extends the power of light to a larger spectrum of signaling molecules. This review summarizes commonly used opsin-free optogenetic strategies, presents a historical overview of split protein complementation, and highlights the adaptation of split protein recombination as optogenetic sensors and actuators.
57.

Synthetic cells with self-activating optogenetic proteins communicate with natural cells.

blue EL222 iLID in vitro Extracellular optogenetics
Nat Commun, 28 Apr 2022 DOI: 10.1038/s41467-022-29871-8 Link to full text
Abstract: Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the design and implementation of bioluminescent intercellular and intracellular signaling mechanisms in synthetic cells, dismissing the need for an external light source. First, we engineer light generating SCs with an optimized lipid membrane and internal composition, to maximize luciferase expression levels and enable high-intensity emission. Next, we show these cells' capacity to trigger bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent intracellular signaling with self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of controlling engineered processes inside tissues.
58.

Engineering Light-Control in Biology.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 28 Apr 2022 DOI: 10.3389/fbioe.2022.901300 Link to full text
Abstract: Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
59.

Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems.

blue Cryptochromes LOV domains Review
Semin Cell Dev Biol, 26 Apr 2022 DOI: 10.1016/j.semcdb.2022.04.013 Link to full text
Abstract: Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
60.

Optogenetic tools for microbial synthetic biology.

blue green near-infrared red BLUF domains Cryptochromes LOV domains Phytochromes Review
Biotechnol Adv, 6 Apr 2022 DOI: 10.1016/j.biotechadv.2022.107953 Link to full text
Abstract: Chemical induction is one of the most common modalities used to manipulate gene expression in living systems. However, chemical induction can be toxic or expensive that compromise the economic feasibility when it comes to industrial-scale synthetic biology applications. These complications have driven the pursuit of better induction systems. Optogenetics technique can be a solution as it not only enables dynamic control with unprecedented spatiotemporal precision but also is inexpensive and eco-friendlier. The optogenetic technique harnesses natural light-sensing modules that are genetically encodable and re-programmable in various hosts. By further engineering these modules to connect with the microbial regulatory machinery, gene expression and protein activity can be finely tuned simply through light irradiation. Recent works on applying optogenetics to microbial synthetic biology have yielded remarkable achievements. To further expand the usability of optogenetics, more optogenetic tools with greater portability that are compatible with different microbial hosts need to be developed. This review focuses on non-opsin optogenetic systems and the current state of optogenetic advancements in microbes, by showcasing the different designs and functions of optogenetic tools, followed by an insight into the optogenetic approaches used to circumvent challenges in synthetic biology.
61.

Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.

blue CRY2/CIB1 EL222 S. cerevisiae Transgene expression
Cell Syst, 14 Mar 2022 DOI: 10.1016/j.cels.2022.02.004 Link to full text
Abstract: Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
62.

Using single-cell models to predict the functionality of synthetic circuits at the population scale.

blue EL222 S. cerevisiae Transgene expression
Proc Natl Acad Sci U S A, 10 Mar 2022 DOI: 10.1073/pnas.2114438119 Link to full text
Abstract: SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models. Here we show how multiscale stochastic kinetic models that simultaneously track single-cell and population processes can be obtained based on an augmentation of the chemical master equation. These models enable us to quantitatively predict complex population dynamics of a yeast optogenetic differentiation system from a specification of the circuit's components and to demonstrate how cell-to-cell variability can be exploited to purposefully create unintuitive circuit functionality.
63.

Optogenetics Illuminates Applications in Microbial Engineering.

blue green red UV violet BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Annu Rev Chem Biomol Eng, 23 Feb 2022 DOI: 10.1146/annurev-chembioeng-092120-092340 Link to full text
Abstract: Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
64.

Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 18 Feb 2022 DOI: 10.1021/acssynbio.1c00387 Link to full text
Abstract: Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the first systematic study of in vivo maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.
65.

Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
Int J Mol Sci, 3 Feb 2022 DOI: 10.3390/ijms23031737 Link to full text
Abstract: Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
66.

Optophysiology: Illuminating cell physiology with optogenetics.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Physiol Rev, 24 Jan 2022 DOI: 10.1152/physrev.00021.2021 Link to full text
Abstract: Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
67.

Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production.

blue green CcaS/CcaR EL222 RsLOV YtvA E. coli Transgene expression
Molecules, 18 Jan 2022 DOI: 10.3390/molecules27030617 Link to full text
Abstract: Several strategies, including inducer addition and biosensor use, have been developed for dynamical regulation. However, the toxicity, cost, and inflexibility of existing strategies have created a demand for superior technology. In this study, we designed an optogenetic dual-switch system and applied it to increase polyhydroxybutyrate (PHB) production. First, an optimized chromatic acclimation sensor/regulator (RBS10-CcaS#10-CcaR) system (comprising an optimized ribosomal binding site (RBS), light sensory protein CcaS, and response regulator CcaR) was selected for a wide sensing range of approximately 10-fold between green-light activation and red-light repression. The RBS10-CcaS#10-CcaR system was combined with a blue light-activated YF1-FixJ-PhlF system (containing histidine kinase YF1, response regulator FixJ, and repressor PhlF) engineered with reduced crosstalk. Finally, the optogenetic dual-switch system was used to rewire the metabolic flux for PHB production by regulating the sequences and intervals of the citrate synthase gene (gltA) and PHB synthesis gene (phbCAB) expression. Consequently, the strain RBS34, which has high gltA expression and a time lag of 3 h, achieved the highest PHB content of 16.6 wt%, which was approximately 3-fold that of F34 (expressed at 0 h). The results indicate that the optogenetic dual-switch system was verified as a practical and convenient tool for increasing PHB production.
68.

Optogenetic approaches in biotechnology and biomaterials.

blue cyan green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 11 Jan 2022 DOI: 10.1016/j.tibtech.2021.12.007 Link to full text
Abstract: Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
69.

Design and Characterization of an Optogenetic System in Pichia pastoris.

blue EL222 P. pastoris Transgene expression
ACS Synth Biol, 7 Jan 2022 DOI: 10.1021/acssynbio.1c00422 Link to full text
Abstract: Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
70.

Toward Multiplexed Optogenetic Circuits.

blue green red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
Front Bioeng Biotechnol, 5 Jan 2022 DOI: 10.3389/fbioe.2021.804563 Link to full text
Abstract: Owing to its ubiquity and easy availability in nature, light has been widely employed to control complex cellular behaviors. Light-sensitive proteins are the foundation to such diverse and multilevel adaptive regulations in a large range of organisms. Due to their remarkable properties and potential applications in engineered systems, exploration and engineering of natural light-sensitive proteins have significantly contributed to expand optogenetic toolboxes with tailor-made performances in synthetic genetic circuits. Progressively, more complex systems have been designed in which multiple photoreceptors, each sensing its dedicated wavelength, are combined to simultaneously coordinate cellular responses in a single cell. In this review, we highlight recent works and challenges on multiplexed optogenetic circuits in natural and engineered systems for a dynamic regulation breakthrough in biotechnological applications.
71.

Optogenetics in bacteria - applications and opportunities.

blue green near-infrared red BLUF domains Cryptochromes LOV domains Phytochromes Review
FEMS Microbiol Rev, 13 Nov 2021 DOI: 10.1093/femsre/fuab055 Link to full text
Abstract: Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
72.

The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters.

blue green near-infrared red UV violet BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Chem Rev, 20 Oct 2021 DOI: 10.1021/acs.chemrev.1c00194 Link to full text
Abstract: This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
73.

A light tunable differentiation system for the creation and control of consortia in yeast.

blue EL222 S. cerevisiae Transgene expression Cell differentiation
Nat Commun, 5 Oct 2021 DOI: 10.1038/s41467-021-26129-7 Link to full text
Abstract: Artificial microbial consortia seek to leverage division-of-labour to optimize function and possess immense potential for bioproduction. Co-culturing approaches, the preferred mode of generating a consortium, remain limited in their ability to give rise to stable consortia having finely tuned compositions. Here, we present an artificial differentiation system in budding yeast capable of generating stable microbial consortia with custom functionalities from a single strain at user-defined composition in space and in time based on optogenetically-driven genetic rewiring. Owing to fast, reproducible, and light-tunable dynamics, our system enables dynamic control of consortia composition in continuous cultures for extended periods. We further demonstrate that our system can be extended in a straightforward manner to give rise to consortia with multiple subpopulations. Our artificial differentiation strategy establishes a novel paradigm for the creation of complex microbial consortia that are simple to implement, precisely controllable, and versatile to use.
74.

Optogenetic strategies for the control of gene expression in yeasts.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
Biotechnol Adv, 28 Sep 2021 DOI: 10.1016/j.biotechadv.2021.107839 Link to full text
Abstract: Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
75.

Rapid prototyping and design of cybergenetic single-cell controllers.

blue EL222 S. cerevisiae
Nat Commun, 24 Sep 2021 DOI: 10.1038/s41467-021-25754-6 Link to full text
Abstract: The design and implementation of synthetic circuits that operate robustly in the cellular context is fundamental for the advancement of synthetic biology. However, their practical implementation presents challenges due to low predictability of synthetic circuit design and time-intensive troubleshooting. Here, we present the Cyberloop, a testing framework to accelerate the design process and implementation of biomolecular controllers. Cellular fluorescence measurements are sent in real-time to a computer simulating candidate stochastic controllers, which in turn compute the control inputs and feed them back to the controlled cells via light stimulation. Applying this framework to yeast cells engineered with optogenetic tools, we examine and characterize different biomolecular controllers, test the impact of non-ideal circuit behaviors such as dilution on their operation, and qualitatively demonstrate improvements in controller function with certain network modifications. From this analysis, we derive conditions for desirable biomolecular controller performance, thereby avoiding pitfalls during its biological implementation.
Submit a new publication to our database