Showing 51 - 75 of 101 results
51.
Engineering a far-red light–activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors.
Abstract:
It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)–activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode–based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the PLK1 oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.
52.
Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.
-
Morikawa, K
-
Furuhashi, K
-
de Sena-Tomas, C
-
Garcia-Garcia, AL
-
Bekdash, R
-
Klein, AD
-
Gallerani, N
-
Yamamoto, HE
-
Park, SE
-
Collins, GS
-
Kawano, F
-
Sato, M
-
Lin, CS
-
Targoff, KL
-
Au, E
-
Salling, MC
-
Yazawa, M
Abstract:
Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.
53.
Optogenetic stimulation of phosphoinositides reveals a critical role of primary cilia in eye pressure regulation.
Abstract:
Glaucoma is a group of progressive optic neuropathies that cause irreversible vision loss. Although elevated intraocular pressure (IOP) is associated with the development and progression of glaucoma, the mechanisms for its regulation are not well understood. Here, we have designed CIBN/CRY2-based optogenetic constructs to study phosphoinositide regulation within distinct subcellular compartments. We show that stimulation of CRY2-OCRL, an inositol 5-phosphatase, increases aqueous humor outflow and lowers IOP in vivo, which is caused by a calcium-dependent actin rearrangement of the trabecular meshwork cells. Phosphoinositide stimulation also rescues defective aqueous outflow and IOP in a Lowe syndrome mouse model but not in IFT88fl/fl mice that lack functional cilia. Thus, our study is the first to use optogenetics to regulate eye pressure and demonstrate that tight regulation of phosphoinositides is critical for aqueous humor homeostasis in both normal and diseased eyes.
54.
A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy.
-
Hou, X
-
Shou, C
-
He, M
-
Xu, J
-
Cheng, Y
-
Yuan, Z
-
Lan, M
-
Zhao, Y
-
Yang, Y
-
Chen, X
-
Gao, F
Abstract:
A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and αvβ3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.
55.
Dynamic Fas signaling network regulates neural stem cell proliferation and memory enhancement.
Abstract:
Activation of Fas (CD95) is observed in various neurological disorders and can lead to both apoptosis and prosurvival outputs, yet how Fas signaling operates dynamically in the hippocampus is poorly understood. The optogenetic dissection of a signaling network can yield molecular-level explanations for cellular responses or fates, including the signaling dysfunctions seen in numerous diseases. Here, we developed an optogenetically activatable Fas that works in a physiologically plausible manner. Fas activation in immature neurons of the dentate gyrus triggered mammalian target of rapamycin (mTOR) activation and subsequent brain-derived neurotrophic factor secretion. Phosphorylation of extracellular signal-regulated kinase (Erk) in neural stem cells was induced under prolonged Fas activation. Repetitive activation of this signaling network yielded proliferation of neural stem cells and a transient increase in spatial working memory in mice. Our results demonstrate a novel Fas signaling network in the dentate gyrus and illuminate its consequences for adult neurogenesis and memory enhancement.
56.
RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations.
-
Yao, S
-
Yuan, P
-
Ouellette, B
-
Zhou, T
-
Mortrud, M
-
Balaram, P
-
Chatterjee, S
-
Wang, Y
-
Daigle, TL
-
Tasic, B
-
Kuang, X
-
Gong, H
-
Luo, Q
-
Zeng, S
-
Curtright, A
-
Dhaka, A
-
Kahan, A
-
Gradinaru, V
-
Chrapkiewicz, R
-
Schnitzer, M
-
Zeng, H
-
Cetin, A
Abstract:
Brain circuits comprise vast numbers of interconnected neurons with diverse molecular, anatomical and physiological properties. To allow targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.
57.
Establishment of a tTA-dependent photoactivatable Cre recombinase knock-in mouse model for optogenetic genome engineering.
Abstract:
The Cre-loxP recombination system is widely used to generate genetically modified mice for biomedical research. Recently, a highly efficient photoactivatable Cre (PA-Cre) based on reassembly of split Cre fragments has been established. This technology enables efficient DNA recombination that is activated upon blue light illumination with spatiotemporal precision. In this study, we generated a tTA-dependent photoactivatable Cre-loxP recombinase knock-in mouse model (TRE-PA-Cre mice) using a CRISPR/Cas9 system. These mice were crossed with ROSA26-tdTomato mice (Cre reporter mouse) to visualize DNA recombination as marked by tdTomato expression. We demonstrated that external noninvasive LED blue light illumination allows efficient DNA recombination in the liver of TRE-PA-Cre:ROSA26-tdTomato mice transfected with tTA expression vectors using hydrodynamic tail vein injection. The TRE-PA-Cre mouse established here promises to be useful for optogenetic genome engineering in a noninvasive, spatiotemporal, and cell-type specific manner in vivo.
58.
Optogenetic manipulation of calcium signals in single T cells in vivo.
Abstract:
By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation. Furthermore, we identify an actuator/reporter combination that permits the simultaneous manipulation and visualization of calcium signals in individual T cells in vivo. With this strategy, we document the consequences of defined patterns of calcium signals on T cell migration, adhesion, and chemokine release. Manipulation of individual immune cells in vivo should open new avenues for establishing the functional contribution of single immune cells engaged in complex reactions.
59.
Engineering light-controllable CAR T cells for cancer immunotherapy.
-
Huang, Z
-
Wu, Y
-
Allen, ME
-
Pan, Y
-
Kyriakakis, P
-
Lu, S
-
Chang, YJ
-
Wang, X
-
Chien, S
-
Wang, Y
Abstract:
T cells engineered to express chimeric antigen receptors (CARs) can recognize and engage with target cancer cells with redirected specificity for cancer immunotherapy. However, there is a lack of ideal CARs for solid tumor antigens, which may lead to severe adverse effects. Here, we developed a light-inducible nuclear translocation and dimerization (LINTAD) system for gene regulation to control CAR T activation. We first demonstrated light-controllable gene expression and functional modulation in human embryonic kidney 293T and Jurkat T cell lines. We then improved the LINTAD system to achieve optimal efficiency in primary human T cells. The results showed that pulsed light stimulations can activate LINTAD CAR T cells with strong cytotoxicity against target cancer cells, both in vitro and in vivo. Therefore, our LINTAD system can serve as an efficient tool to noninvasively control gene activation and activate inducible CAR T cells for precision cancer immunotherapy.
60.
Optogenetic modulation of TrkB signaling in the mouse brain.
Abstract:
Optogenetic activation of receptors has advantages compared with chemical or ligand treatment because of its high spatial and temporal precision. Especially in the brain, the use of a genetically encoded light-tunable receptor is superior to direct infusion or systemic drug treatment. We applied light activatable TrkB receptor in mouse brain with reduced basal activity by incorporating Cry2PHR mutant, Opto-cytTrkB(E281A). Upon AAV mediated gene delivery, this form was expressed at sufficient levels in the mouse hippocampus (HPC) and medial entorhinal cortex (MEC) retaining normal canonical signal transduction by blue light stimulus, even by delivery of non-invasive LED light on the mouse head. Within target cells, where its expression was driven by a cell type-specific promoter, Opto-cytTrkB(E281A)-mediated TrkB signaling could be controlled by adjusting light-stimulation conditions. We further demonstrated that Opto-cytTrkB(E281A) could locally induce TrkB signaling in axon terminals in the MEC-HPC. In summary, Opto-cytTrkB(E281A) will be useful for elucidating time- and region-specific roles of TrkB signaling ranging from cellular function to neural circuit mechanisms.
61.
Non-invasive optical control of endogenous Ca2+ channels in awake mice.
-
Kim, S
-
Kyung, T
-
Chung, JH
-
Kim, N
-
Keum, S
-
Lee, J
-
Park, H
-
Kim, HM
-
Lee, S
-
Shin, HS
-
Do Heo, W
Abstract:
Optogenetic approaches for controlling Ca2+ channels provide powerful means for modulating diverse Ca2+-specific biological events in space and time. However, blue light-responsive photoreceptors are, in principle, considered inadequate for deep tissue stimulation unless accompanied by optic fiber insertion. Here, we present an ultra-light-sensitive optogenetic Ca2+ modulator, named monSTIM1 encompassing engineered cryptochrome2 for manipulating Ca2+ signaling in the brain of awake mice through non-invasive light delivery. Activation of monSTIM1 in either excitatory neurons or astrocytes of mice brain is able to induce Ca2+-dependent gene expression without any mechanical damage in the brain. Furthermore, we demonstrate that non-invasive Ca2+ modulation in neurons can be sufficiently and effectively translated into changes in behavioral phenotypes of awake mice.
62.
A time-dependent role for the transcription factor CREB in neuronal allocation to an engram underlying a fear memory revealed using a novel in vivo optogenetic tool to modulate CREB function.
-
Park, A
-
Jacob, AD
-
Walters, BJ
-
Park, S
-
Rashid, AJ
-
Jung, JH
-
Lau, J
-
Woolley, GA
-
Frankland, PW
-
Josselyn, SA
Abstract:
The internal representation of an experience is thought to be encoded by long-lasting physical changes to the brain ("engrams") (Josselyn et al. Nat Rev Neurosci 16:521-534, 2015; Josselyn et al. J Neurosci 37:4647-4657, 2017; Schacter. 2001; Tonegawa et al. Neuron 87:918-931, 2015). Previously, we (Han et al. Science 316:457-460, 2007) and others (Zhou et al. Nat Neurosci 12:1438-1443, 2009) showed within the lateral amygdala (LA), a region critical for auditory conditioned fear, eligible neurons compete against one other for allocation to an engram. Neurons with relatively higher function of the transcription factor CREB were more likely to be allocated to the engram. In these studies, though, CREB function was artificially increased for several days before training. Precisely when increased CREB function is important for allocation remains an unanswered question. Here, we took advantage of a novel optogenetic tool (opto-DN-CREB) (Ali et al. Chem Biol 22:1531-1539, 2015) to gain spatial and temporal control of CREB function in freely behaving mice. We found increasing CREB function in a small, random population of LA principal neurons in the minutes-hours, but not 24 h, before training was sufficient to enhance memory, likely because these neurons were preferentially allocated to the underlying engram. However, similarly increasing CREB activity in a small population of random LA neurons immediately after training disrupted subsequent memory retrieval, likely by disrupting the precise spatial and temporal patterns of offline post-training neuronal activity and/or function required for consolidation. These findings reveal the importance of the timing of CREB activity in regulating allocation and subsequent memory retrieval, and further, highlight the potential of optogenetic approaches to control protein function with temporal specificity in behaving animals.
63.
Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star.
-
Yang, J
-
Li, L
-
Shemetov, AA
-
Lee, S
-
Zhao, Y
-
Liu, Y
-
Shen, Y
-
Li, J
-
Oka, Y
-
Verkhusha, VV
-
Wang, LV
Abstract:
Focusing light deep by engineering wavefronts toward guide stars inside scattering media has potential biomedical applications in imaging, manipulation, stimulation, and therapy. However, the lack of endogenous guide stars in biological tissue hinders its translations to in vivo applications. Here, we use a reversibly switchable bacterial phytochrome protein as a genetically encoded photochromic guide star (GePGS) in living tissue to tag photons at targeted locations, achieving light focusing inside the tissue by wavefront shaping. As bacterial phytochrome-based GePGS absorbs light differently upon far-red and near-infrared illumination, a large dynamic absorption contrast can be created to tag photons inside tissue. By modulating the GePGS at a distinctive frequency, we suppressed the competition between GePGS and tissue motions and formed tight foci inside mouse tumors in vivo and acute mouse brain tissue, thus improving light delivery efficiency and specificity. Spectral multiplexing of GePGS proteins with different colors is an attractive possibility.
64.
Blue light-triggered optogenetic system for treating uveal melanoma.
-
Zhang, M
-
Lin, X
-
Zhang, J
-
Su, L
-
Ma, M
-
Ea, VL
-
Liu, X
-
Wang, L
-
Chang, J
-
Li, X
-
Zhang, X
Abstract:
Uveal melanoma is the most common intraocular primary malignancy in adults and has been considered a fatal disease for decades. Optogenetics is an emerging technique that can control the activation of signaling components via irradiation with visible light. The clinical translation of optogenetics has been limited because of the need for surgical implantation of electrodes and relatively shallow tissue penetration. As visible light easily penetrates the eyes, we hypothesized that an optogenetics approach can be an effective treatment of uveal melanoma without surgery. In this study, we evaluated the feasibility of this strategy by using a genetically encoded optogenetic system based on reversible blue light-induced binding pairs between Fas-CIB1-EGFP and CRY2-mCherry-FADD. Subretinal injection of B16 cells was performed to create a uveal melanoma model. Plasmids pairs were co-transfected into B16 cells. We found that blue light irradiation dynamically controlled the translocation of FADD to Fas on the plasma membrane and induced the apoptosis of B16 cells transfected with the optogenetic nanosystem in vitro. Moreover, the blue light-controlled optogenetic nanosystem suppressed the growth of uveal melanoma in vivo by inducing apoptosis. These results suggest that light-controlled optogenetic therapy can be used as a potential novel therapeutic strategy for uveal melanoma.
65.
Visualization of a blue light transmission area in living animals using light-induced nuclear translocation of fluorescent proteins.
Abstract:
Optical manipulations are widely used to analyze neuronal functions in vivo. Blue light is frequently used to activate channelrhodopsins or LOV domains, although the degrees of its absorption and scattering are higher than those of longer wavelength light. High spatial resolution of optical manipulation is easily achieved in vitro, while the light is unevenly scattered and absorbed in tissues due to many factors. It is difficult to spatially measure a blue light transmission area in vivo. Here, we propose a genetic method to visualize blue light transmission in the brain and other organs using light-induced nuclear translocation of fluorescent proteins with a LOV domain. A light-inducible nuclear localization signal (LINuS) consists of a LOV2 domain fused with a nuclear localization signal (NLS). We confirmed that blue light illumination induced reversible translocation of NES-tdTomato-LINuS from the cytosol to the nucleus within 30 min in HEK293 cells. By employing a PHP.eb capsid that can penetrate the blood-brain barrier, retro-orbital sinus injection of adeno-associated virus (AAV) vectors induced scattered expression of nuclear export signal (NES)-tdTomato-LINuS in the brain. We confirmed that 30-min transcranial blue light illumination induced nuclear translocation of NES-tdTomato-LINuS in the cortex, the hippocampus, and even the paraventricular nucleus of the thalamus. We also found that mice exposed to blue light in a shaved abdominal area exhibited a substantial increase in nuclear translocation in the ventral surface lobe of the liver. These results provide a simple way to obtain useful information on light transmission in tissues without any transgenic animals or skillful procedures.
66.
FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics.
Abstract:
Optical dimerizers have been developed to untangle signaling pathways, but they are of limited use in vivo, partly due to their inefficient activation under two-photon (2P) excitation. To overcome this problem, we developed Förster resonance energy transfer (FRET)-assisted photoactivation, or FRAPA. On 2P excitation, mTagBFP2 efficiently absorbs and transfers the energy to the chromophore of CRY2. Based on structure-guided engineering, a chimeric protein with 40% FRET efficiency was developed and named 2P-activatable CRY2, or 2paCRY2. 2paCRY2 was employed to develop a RAF1 activation system named 2paRAF. In three-dimensionally cultured cells expressing 2paRAF, extracellular signal-regulated kinase (ERK) was efficiently activated by 2P excitation at single-cell resolution. Photoactivation of ERK was also accomplished in the epidermal cells of 2paRAF-expressing mice. We further developed an mTFP1-fused LOV domain that exhibits efficient response to 2P excitation. Collectively, FRAPA will pave the way to single-cell optical control of signaling pathways in vivo.
67.
A split CRISPR-Cpf1 platform for inducible genome editing and gene activation.
Abstract:
The CRISPR-Cpf1 endonuclease has recently been demonstrated as a powerful tool to manipulate targeted gene sequences. Here, we performed an extensive screening of split Cpf1 fragments and identified a pair that, combined with inducible dimerization domains, enables chemical- and light-inducible genome editing in human cells. We also identified another split Cpf1 pair that is spontaneously activated. The newly generated amino and carboxyl termini of the spontaneously activated split Cpf1 can be repurposed as de novo fusion sites of artificial effector domains. Based on this finding, we generated an improved split dCpf1 activator, which has the potential to activate endogenous genes more efficiently than a previously established dCas9 activator. Finally, we showed that the split dCpf1 activator can efficiently activate target genes in mice. These results demonstrate that the present split Cpf1 provides an efficient and sophisticated genome manipulation in the fields of basic research and biotechnological applications.
68.
Optogenetic gene editing in regional skin.
Abstract:
Abstract not available.
69.
Achieving tight control of a photoactivatable Cre recombinase gene switch: new design strategies and functional characterization in mammalian cells and rodent.
Abstract:
A common mechanism for inducibly controlling protein function relies on reconstitution of split protein fragments using chemical or light-induced dimerization domains. A protein is split into fragments that are inactive on their own, but can be reconstituted after dimerization. As many split proteins retain affinity for their complementary half, maintaining low activity in the absence of an inducer remains a challenge. Here, we systematically explore methods to achieve tight regulation of inducible proteins that are effective despite variation in protein expression level. We characterize a previously developed split Cre recombinase (PA-Cre2.0) that is reconstituted upon light-induced CRY2-CIB1 dimerization, in cultured cells and in vivo in rodent brain. In culture, PA-Cre2.0 shows low background and high induced activity over a wide range of expression levels, while in vivo the system also shows low background and sensitive response to brief light inputs. The consistent activity stems from fragment compartmentalization that shifts localization toward the cytosol. Extending this work, we exploit nuclear compartmentalization to generate light-and-chemical regulated versions of Cre recombinase. This work demonstrates in vivo functionality of PA-Cre2.0, describes new approaches to achieve tight inducible control of Cre DNA recombinase, and provides general guidelines for further engineering and application of split protein fragments.
70.
Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.
Abstract:
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
71.
Photocontrollable mononegaviruses.
Abstract:
Mononegaviruses are promising tools as oncolytic vectors and transgene delivery vectors for gene therapy and regenerative medicine. By using the Magnet proteins, which reversibly heterodimerize upon blue light illumination, photocontrollable mononegaviruses (measles and rabies viruses) were generated. The Magnet proteins were inserted into the flexible domain of viral polymerase, and viruses showed strong replication and oncolytic activities only when the viral polymerases were activated by blue light illumination.
72.
Neurotrophin receptor tyrosine kinases regulated with near-infrared light.
Abstract:
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
73.
Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.
-
Pan, H
-
Wang, H
-
Yu, J
-
Huang, X
-
Hao, Y
-
Zhang, C
-
Ji, W
-
Yang, M
-
Gong, X
-
Wu, X
-
Chang, J
Abstract:
In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The implantable, wireless, recyclable, less-invasive and biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids, for protein import; upconversion rods-encapsulated flexible capsule (UCRs-capsule), for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (∼3.5 mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.
74.
Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions.
-
Jung, H
-
Kim, SW
-
Kim, M
-
Hong, J
-
Yu, D
-
Kim, JH
-
Lee, Y
-
Kim, S
-
Woo, D
-
Shin, HS
-
Park, BO
-
Do Heo, W
Abstract:
Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying functions of genes within complex neural circuits. Here, we develop a highly light-sensitive and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manipulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep mouse brain regions by illumination with a noninvasive light-emitting diode. In addition, PA-Flp can be extended to the Cre-lox system through a viral vector as Flp-dependent Cre expression platform, thereby activating both Flp and Cre. Finally, we demonstrate that PA-Flp-dependent, Cre-mediated Cav3.1 silencing in the medial septum increases object-exploration behavior in mice. Thus, PA-Flp is a noninvasive, highly efficient, and easy-to-use optogenetic module that offers a side-effect-free and expandable genetic manipulation tool for neuroscience research.
75.
Potassium channel-based optogenetic silencing.
-
Bernal Sierra, YA
-
Rost, BR
-
Pofahl, M
-
Fernandes, AM
-
Kopton, RA
-
Moser, S
-
Holtkamp, D
-
Masala, N
-
Beed, P
-
Tukker, JJ
-
Oldani, S
-
Bönigk, W
-
Kohl, P
-
Baier, H
-
Schneider-Warme, F
-
Hegemann, P
-
Beck, H
-
Seifert, R
-
Schmitz, D
Abstract:
Optogenetics enables manipulation of biological processes with light at high spatio-temporal resolution to control the behavior of cells, networks, or even whole animals. In contrast to the performance of excitatory rhodopsins, the effectiveness of inhibitory optogenetic tools is still insufficient. Here we report a two-component optical silencer system comprising photoactivated adenylyl cyclases (PACs) and the small cyclic nucleotide-gated potassium channel SthK. Activation of this 'PAC-K' silencer by brief pulses of low-intensity blue light causes robust and reversible silencing of cardiomyocyte excitation and neuronal firing. In vivo expression of PAC-K in mouse and zebrafish neurons is well tolerated, where blue light inhibits neuronal activity and blocks motor responses. In combination with red-light absorbing channelrhodopsins, the distinct action spectra of PACs allow independent bimodal control of neuronal activity. PAC-K represents a reliable optogenetic silencer with intrinsic amplification for sustained potassium-mediated hyperpolarization, conferring high operational light sensitivity to the cells of interest.