Showing 51 - 75 of 136 results
51.
SPLIT: Stable Protein Coacervation using a Light Induced Transition.
Abstract:
Protein coacervates serve as hubs to concentrate and sequester proteins and nucleotides and thus function as membrane-less organelles to manipulate cell physiology. We have engineered a coacervating protein to create tunable, synthetic membrane-less organelles that assemble in response to a single pulse of light. Coacervation is driven by the intrinsically disordered RGG domain from the protein LAF-1, and opto-responsiveness is coded by the protein PhoCl which cleaves in response to 405 nm light. We developed a fusion protein containing a solubilizing maltose binding protein domain, PhoCl, and two copies of the RGG domain. Several seconds of illumination at 405 nm is sufficient to cleave PhoCl, removing the solubilization domain and enabling RGG-driven coacervation within minutes in cellular-sized water-in-oil emulsions. An optimized version of this system displayed light-induced coacervation in Saccharomyces cerevisiae. The methods described here provide novel strategies for inducing protein phase separation using light.
52.
Minimally disruptive optical control of protein tyrosine phosphatase 1B.
Abstract:
Protein tyrosine phosphatases regulate a myriad of essential subcellular signaling events, yet they remain difficult to study in their native biophysical context. Here we develop a minimally disruptive optical approach to control protein tyrosine phosphatase 1B (PTP1B)-an important regulator of receptor tyrosine kinases and a therapeutic target for the treatment of diabetes, obesity, and cancer-and we use that approach to probe the intracellular function of this enzyme. Our conservative architecture for photocontrol, which consists of a protein-based light switch fused to an allosteric regulatory element, preserves the native structure, activity, and subcellular localization of PTP1B, affords changes in activity that match those elicited by post-translational modifications inside the cell, and permits experimental analyses of the molecular basis of optical modulation. Findings indicate, most strikingly, that small changes in the activity of PTP1B can cause large shifts in the phosphorylation states of its regulatory targets.
53.
Hydrogels With Tunable Mechanical Properties Based on Photocleavable Proteins.
Abstract:
Hydrogels with photo-responsive mechanical properties have found broad biomedical applications, including delivering bioactive molecules, cell culture, biosensing, and tissue engineering. Here, using a photocleavable protein, PhoCl, as the crosslinker we engineer two types of poly(ethylene glycol) hydrogels whose mechanical stability can be weakened or strengthened, respectively, upon visible light illumination. In the photo weakening hydrogels, photocleavage leads to rupture of the protein crosslinkers, and decrease of the mechanical properties of the hydrogels. In contrast, in the photo strengthening hydrogels, by properly choosing the crosslinking positions, photocleavage does not rupture the crosslinking sites but exposes additional cryptical reactive cysteine residues. When reacting with extra maleimide groups in the hydrogel network, the mechanical properties of the hydrogels can be enhanced upon light illumination. Our study indicates that photocleavable proteins could provide more designing possibilities than the small-molecule counterparts. A proof-of-principle demonstration of spatially controlling the mechanical properties of hydrogels was also provided.
54.
Engineered BRET-Based Biologic Light Sources Enable Spatiotemporal Control over Diverse Optogenetic Systems.
Abstract:
Light-inducible optogenetic systems offer precise spatiotemporal control over a myriad of biologic processes. Unfortunately, current systems are inherently limited by their dependence on external light sources for their activation. Further, the utility of laser/LED-based illumination strategies are often constrained by the need for invasive surgical procedures to deliver such devices and local heat production, photobleaching and phototoxicity that compromises cell and tissue viability. To overcome these limitations, we developed a novel BRET-activated optogenetics (BEACON) system that employs biologic light to control optogenetic tools. BEACON is driven by self-illuminating bioluminescent-fluorescent proteins that generate "spectrally tuned" biologic light via bioluminescence resonance energy transfer (BRET). Notably, BEACON robustly activates a variety of commonly used optogenetic systems in a spatially restricted fashion, and at physiologically relevant time scales, to levels that are achieved by conventional laser/LED light sources.
55.
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors.
Abstract:
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants.
56.
Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization.
Abstract:
Hydrogel materials have become a versatile platform for in vitro cell culture due to their ability to simulate many aspects of native tissues. However, precise spatiotemporal presentation of peptides and other biomolecules has remained challenging. Here we report the use of light-sensing proteins (LSPs), more commonly used in optogenetics research, as light-activated reversible binding sites within synthetic poly(ethylene glycol) (PEG) hydrogels. We used LOVTRAP, a two component LSP system consisting of LOV2, a protein domain that can cycle reversibly between "light" and "dark" conformations in response to blue light, and a z-affibody, Zdark (Zdk), that binds the dark state of LOV2, to spatiotemporally control the presentation of a recombinant protein within PEG hydrogels. By immobilizing LOV2 within PEG gels, we were able to capture a recombinant fluorescent protein (used as a model biomolecule) containing a Zdk domain, and then release the Zdk fusion protein using blue light. Zdk was removed from LOV2-containing PEG gels using focused blue light, resulting in a 30% reduction of fluorescence compared to unexposed regions of the gel. Additionally, the reversible binding capability of LOVTRAP was observed in our system, enabling our LOV2 gels to capture and release Zdk at least three times. By adding a Zdk domain to a recombinant peptide or protein, dynamic, spatially constrained displays of non-diffusing ligands within a PEG gel could feasibly be achieved using LOV2.
57.
Production of Phytochromes by High-Cell-Density E. coli Fermentation.
Abstract:
Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.
58.
Near-infrared optogenetic genome engineering based on photon upconversion hydrogels.
Abstract:
Photon upconversion (UC) from near-infrared (NIR) light to visible light has enabled optogenetic manipulations in deep tissues. However, materials for NIR optogenetics have been limited to inorganic UC nanoparticles. Extension to organic triplet-triplet annihilation (TTA)-based UC systems would innovate NIR optogenetics toward the use of biocompatible materials placed at a desired position. Here, we report the first example of NIR light-triggered optogenetics by using TTA-UC hydrogels. To achieve triplet sensitization even in the highly viscous hydrogel matrices, a NIR-absorbing complex is covalently linked with energy-pooling acceptor chromophores, which significantly elongates the donor triplet lifetime. The donor and acceptor are solubilized in hydrogels formed from biocompatible Pluronic F127 micelles, and we find that the additional heat treatment endows remarkable oxygen-tolerant property to the excited triplets in the hydrogel. Combined with photoactivatable Cre recombinase (PA-Cre) technology, NIR light stimulation successfully performs genome engineering such as hippocampal dendritic spine formation involved in learning and long-term memory.
59.
Genetically Encoded Photocleavable Linkers for Patterned Protein Release from Biomaterials.
Abstract:
Given the critical role that proteins play in almost all biological processes, there is great interest in controlling their presentation within and release from biomaterials. Despite such outstanding enthusiasm, previously developed strategies in this regard result in ill-defined and heterogeneous populations with substantially decreased activity, precluding their successful application to fragile species including growth factors. Here, we introduce a modular and scalable method for creating monodisperse, genetically encoded chimeras that enable bioactive proteins to be immobilized within and subsequently photoreleased from polymeric hydrogels. Building upon recent developments in chemoenzymatic reactions, bioorthogonal chemistry, and optogenetics, we tether fluorescent proteins, model enzymes, and growth factors site-specifically to gel biomaterials through a photocleavable protein (PhoCl) that undergoes irreversible backbone photoscission upon exposure to cytocompatible visible light (λ ≈ 400 nm) in a dose-dependent manner. Mask-based and laser-scanning lithographic strategies using commonly available light sources are employed to spatiotemporally pattern protein release from hydrogels while retaining their full activity. The photopatterned epidermal growth factor presentation is exploited to promote anisotropic cellular proliferation in 3D. We expect these methods to be broadly useful for applications in diagnostics, drug delivery, and regenerative medicine.
60.
A blue light receptor that mediates RNA binding and translational regulation.
-
Weber, AM
-
Kaiser, J
-
Ziegler, T
-
Pilsl, S
-
Renzl, C
-
Sixt, L
-
Pietruschka, G
-
Moniot, S
-
Kakoti, A
-
Juraschitz, M
-
Schrottke, S
-
Lledo Bryant, L
-
Steegborn, C
-
Bittl, R
-
Mayer, G
-
Möglich, A
Abstract:
Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.
61.
Reversible photocontrol of oxidase activity by inserting a photosensitive domain into the oxidase.
Abstract:
Background
Photocontrol of protein activity has become a helpful strategy for regulating biological pathways. Herein, a method for the precise and reversible photocontrol of oxidase activity was developed by using the conformational change of the AsLOV2 domain.
Results
The AsLOV2 domain was inserted into the nonconserved sites exposed on the surface of the AdhP protein, and the alov9 fusion was successfully screened for subsequent optical experiments under the assumption that neither of these actions affected the original activity of AdhP protein. The activity of alov9 was noticeably inhibited when the fusion was exposed to 470 nm blue light and recovered within 30 min. As a result, we could precisely and reversibly photocontrol alov9 activity through the optimization of several parameters, including cofactor concentration, light intensity, and illumination time.
Conclusions
An efficient method was developed for the photoinhibition of enzymatic activity based on the insertion of the light-sensitive AsLOV2 domain, providing new ideas for photocontrolling metabolic pathways without carriers in the future.
62.
Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells.
Abstract:
Decorating GUVs, used as minimal synthetic cell models, with photoswitchable proteins allows controlling the adhesion between them and their assembly into multicellular structures with light. Thereby, the chemical communication between a sender and a receiver GUV, which strongly depends on their spatial proximity, can also be photoregulated.
63.
Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases.
Abstract:
As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.
64.
Optical control of transcription - genetically encoded photoswitchable variants of T7 RNA polymerase.
Abstract:
Light-sensing protein domains that link an exogenous light signal to the activity of an enzyme have attracted much notice for engineering new regulatory mechanisms into proteins and for studying the dynamic behavior of intracellular reactions as well as reaction cascades. Light-oxygen-voltage (LOV) photoreceptors are blue light-sensing modules that have been intensely characterized for this purpose and linked to several proteins of interest. For successful application of these tools it is crucial to identify appropriate fusion strategies for combining sensor and enzyme domains that sustain activity and light-induced responsivity. Terminal fusion of LOV domains is the natural strategy; however, this is not transferrable to T7 RNA polymerase since both of its termini are involved in catalysis. We show here that it is possible to covalently insert LOV domains into the polymerase protein while preserving its activity and generating new light-responsive allosteric coupling.
65.
Engineering Adenylate Cyclase Activated by Near-Infrared Window Light for Mammalian Optogenetic Applications.
Abstract:
Light in the near-infrared optical window (NIRW) penetrates deep through mammalian tissues, including the skull and brain tissue. Here we engineered an adenylate cyclase (AC) activated by NIRW light (NIRW-AC) and suitable for mammalian applications. To accomplish this goal, we constructed fusions of several bacteriophytochrome photosensory and bacterial AC modules using guidelines for designing chimeric homodimeric bacteriophytochromes. One engineered NIRW-AC, designated IlaM5, has significantly higher activity at 37 °C, is better expressed in mammalian cells, and can mediate cAMP-dependent photoactivation of gene expression in mammalian cells, in favorable contrast to the NIRW-ACs engineered earlier. The ilaM5 gene expressed from an AAV vector was delivered into the ventral basal thalamus region of the mouse brain, resulting in the light-controlled suppression of the cAMP-dependent wave pattern of the sleeping brain known as spindle oscillations. Reversible spindle oscillation suppression was observed in sleeping mice exposed to light from an external light source. This study confirms the robustness of principles of homodimeric bacteriophytochrome engineering, describes a NIRW-AC suitable for mammalian optogenetic applications, and demonstrates the feasibility of controlling brain activity via NIRW-ACs using transcranial irradiation.
66.
Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles.
Abstract:
The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.
67.
Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4.
Abstract:
We report direct visualization of the dynamic behavior of transcription factor GAL4 with photo-switching function (GAL4-VVD) in the DNA origami structure. Using high-speed atomic force microscopy (HS-AFM), we observed photo-induced complex formation of GAL4-VVD and substrate DNAs. Dynamic behaviors of GAL4-VVD such as binding, sliding, stalling, and dissociation with two substrate DNA strands, containing specific GAL4 binding sites, were observed. We also observed inter-strand hopping on two double-stranded (ds) DNAs. On a long substrate DNA strand that contained five binding sites, a series of GAL4-VVD/DNA interactions including binding, sliding, stalling, and dissociation could be identified while interacting with the surface. We also found the clear difference in the movement of GAL4-VVD between sliding and stalling in the AFM images. Detailed analysis revealed that GAL4-VVD randomly moved on the dsDNA using sliding and hopping for rapidly searching specific binding sites, and then stalled to the specific sites for the stable complex formation. The results suggest the existence of the different conformational mode of the protein for sliding and stalling. This single-molecule imaging system at the nanoscale resolution provides the insight of the searching mechanism of the DNA binding proteins.
68.
Synthetic cell-like membrane interfaces for probing dynamic protein-lipid interactions.
Abstract:
The ability to rapidly screen interactions between proteins and membrane-like interfaces would aid in establishing the structure-function of protein-lipid interactions, provide a platform for engineering lipid-interacting protein tools, and potentially inform the signaling mechanisms and dynamics of membrane-associated proteins. Here, we describe the preparation and application of water-in-oil (w/o) emulsions with lipid-stabilized droplet interfaces that emulate the plasma membrane inner leaflet with tunable composition. Fluorescently labeled proteins are easily visualized in these synthetic cell-like droplets on an automated inverted fluorescence microscope, thus allowing for both rapid screening of relative binding and spatiotemporally resolved analyses of for example, protein-interface association and dissociation dynamics and competitive interactions, using commonplace instrumentation. We provide protocols for droplet formation, automated imaging assays and analysis, and the production of the positive control protein BcLOV4, a natural photoreceptor with a directly light-regulated interaction with anionic membrane phospholipids that is useful for optogenetic membrane recruitment.
69.
Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome.
Abstract:
Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the know interaction partners, and could filter out all other proteins.
70.
Photo‐ECM: A Blue Light Photoswitchable Synthetic Extracellular Matrix Protein for Reversible Control over Cell–Matrix Adhesion.
Abstract:
The dynamic and spatiotemporal control of integrin‐mediated cell adhesion to RGD motifs in its extracellular matrix (ECM) is important for understating cell biology and biomedical applications because cell adhesion fundamentally regulates cellular behavior. Herein, the first photoswitchable synthetic ECM protein, Photo‐ECM, based on the blue light switchable protein LOV2 is engineered. The Photo‐ECM protein includes a RGD sequence, which is hidden in the folded LOV2 protein structure in the dark and is exposed under blue light so that integrins can bind and cells can adhere. The switchable presentation of the RGD motif allows to reversibly mediate and modulate integrin‐based cell adhesions using noninvasive blue light. With this protein cell adhesions in live cells could be reversed and the dynamics at the cellular level is observed. Hence, the Photo‐ECM opens a new possibility to investigate the spatiotemporal regulation of cell adhesions in cell biology and is the first step toward a genetically encoded and light‐responsive ECM.
71.
Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties.
-
Hörner, M
-
Raute, K
-
Hummel, B
-
Madl, J
-
Creusen, G
-
Thomas, OS
-
Christen, EH
-
Hotz, N
-
Gübeli, RJ
-
Engesser, R
-
Rebmann, B
-
Lauer, J
-
Rolauffs, B
-
Timmer, J
-
Schamel, WWA
-
Pruszak, J
-
Römer, W
-
Zurbriggen, MD
-
Friedrich, C
-
Walther, A
-
Minguet, S
-
Sawarkar, R
-
Weber, W
Abstract:
Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.
72.
An Open-Source Plate Reader.
Abstract:
Microplate readers are foundational instruments in ex-perimental biology and bioengineering that enable mul-tiplexed spectrophotometric measurements. To enhance their accessibility, we here report the design, construc-tion, validation, and benchmarking of an open-source microplate reader. The system features full-spectrum absorbance and fluorescence emission detection, in situ optogenetic stimulation, and stand-alone touch screen programming of automated assay protocols. The total system costs <$3500, a fraction of the cost of commer-cial plate readers, and can detect the fluorescence of common dyes down to ~10 nanomolar concentration. Functional capabilities were demonstrated in context of synthetic biology, optoge¬netics, and photosensory biol-ogy: by steady-state measurements of ligand-induced reporter gene expression in a model of bacterial quorum sensing, and by flavin photocycling kinetic measure-ments of a LOV (light-oxygen-voltage) domain photo-receptor used for optogenetic transcriptional activation. Fully detailed guides for assembling the device and au-tomating it using the custom Python-based API (Appli-cation Program Interface) are provided. This work con-tributes a key technology to the growing community-wide infrastructure of open-source biology-focused hardware, whose creation is facilitated by rapid proto-typing capabilities and low-cost electronics, optoelec-tronics, and microcomputers.
73.
Guided by light: optogenetic control of microtubule gliding assays.
Abstract:
Force generation by molecular motors drives biological processes such as asymmetric cell division and cell migration. Microtubule gliding assays, in which surface-immobilized motor proteins drive microtubule propulsion, are widely used to study basic motor properties as well as the collective behavior of active self-organized systems. Additionally, these assays can be employed for nanotechnological applications such as analyte detection, bio-computation and mechanical sensing. While such assays allow tight control over the experimental conditions, spatiotemporal control of force generation has remained underdeveloped. Here we use light-inducible protein-protein interactions to recruit molecular motors to the surface to control microtubule gliding activity in vitro. We show that using these light-inducible interactions, proteins can be recruited to the surface in patterns, reaching a ~5-fold enrichment within 6 seconds upon illumination. Subsequently, proteins are released with a half-life of 13 seconds when the illumination is stopped. We furthermore demonstrate that light-controlled kinesin recruitment results in reversible activation of microtubule gliding along the surface, enabling efficient control over local microtubule motility. Our approach to locally control force generation offers a way to study the effects of non-uniform pulling forces on different microtubule arrays and also provides novel strategies for local control in nanotechnological applications.
74.
Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.
Abstract:
Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
75.
Target Sequence Recognition by a Light-Activatable Basic Leucine Zipper Factor, Photozipper.
Abstract:
Photozipper (PZ) is a light-activatable basic leucine zipper (bZIP) protein composed of a bZIP domain and a light-oxygen-voltage-sensing domain of aureochrome-1. Blue light induces dimerization and subsequently increases the affinity of PZ for the target DNA sequence. We prepared site-directed PZ mutants in which Asn131 (N131) in the basic region was substituted with Ala and Gln. N131 mutants showed spectroscopic and dimerization properties almost identical to those of wild-type PZ and an increase in helical content in the presence of the target sequence. Quantitative analyses by an electrophoretic mobility shift assay and quartz crystal microbalance (QCM) measurements demonstrated that the half-maximal effective concentrations of N131 mutants to bind to the target sequence were significantly higher than those of PZ. QCM data also revealed that N131 substitutions accelerated the dissociation without affecting the association, suggesting that a base-specific interaction of N131 occurred after the association between PZ and DNA. Activation of PZ by illumination decreased both the standard errors and the unstable period of QCM data. Optical control of transcription factors will provide new knowledge of the recognition of the target sequence.