Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 651 - 675 of 1813 results
651.

Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling.

red Phytochromes Background
Nat Commun, 20 Jul 2021 DOI: 10.1038/s41467-021-24676-7 Link to full text
Abstract: Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
652.

Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts.

blue EL222 S. cerevisiae
Biotechnol Biofuels, 17 Jul 2021 DOI: 10.1186/s13068-021-02008-7 Link to full text
Abstract: Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures.
653.

Spatiotemporal sensitivity of mesoderm specification to FGFR signalling in the Drosophila embryo.

blue CRY2/CRY2 D. melanogaster in vivo Signaling cascade control Developmental processes
Sci Rep, 8 Jul 2021 DOI: 10.1038/s41598-021-93512-1 Link to full text
Abstract: Development of the Drosophila embryonic mesoderm is controlled through both internal and external inputs to the mesoderm. One such factor is Heartless (Htl), a Fibroblast Growth Factor Receptor (FGFR) expressed in the mesoderm. Although Htl has been extensively studied, the dynamics of its action are poorly understood after the initial phases of mesoderm formation and spreading. To begin to address this challenge, we have developed an optogenetic version of the FGFR Heartless in Drosophila (Opto-htl). Opto-htl enables us to activate the FGFR pathway in selective spatial (~ 35 μm section from one of the lateral sides of the embryo) and temporal domains (ranging from 40 min to 14 h) during embryogenesis. Importantly, the effects can be tuned by the intensity of light-activation, making this approach significantly more flexible than other genetic approaches. We performed controlled perturbations to the FGFR pathway to define the contribution of Htl signalling to the formation of the developing embryonic heart and somatic muscles. We find a direct correlation between Htl signalling dosage and number of Tinman-positive heart cells specified. Opto-htl activation favours the specification of Tinman positive cardioblasts and eliminates Eve-positive DA1 muscles. This effect is seen to increase progressively with increasing light intensity. Therefore, fine tuning of phenotypic responses to varied Htl signalling dosage can be achieved more conveniently than with other genetic approaches. Overall, Opto-htl is a powerful new tool for dissecting the role of FGFR signalling during development.
654.

Optogenetic approaches for understanding homeostatic and degenerative processes in Drosophila.

blue cyan near-infrared red BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Cell Mol Life Sci, 7 Jul 2021 DOI: 10.1007/s00018-021-03836-4 Link to full text
Abstract: Many organs and tissues have an intrinsic ability to regenerate from a dedicated, tissue-specific stem cell pool. As organisms age, the process of self-regulation or homeostasis begins to slow down with fewer stem cells available for tissue repair. Tissues become more fragile and organs less efficient. This slowdown of homeostatic processes leads to the development of cellular and neurodegenerative diseases. In this review, we highlight the recent use and future potential of optogenetic approaches to study homeostasis. Optogenetics uses photosensitive molecules and genetic engineering to modulate cellular activity in vivo, allowing precise experiments with spatiotemporal control. We look at applications of this technology for understanding the mechanisms governing homeostasis and degeneration as applied to widely used model organisms, such as Drosophila melanogaster, where other common tools are less effective or unavailable.
655.

Cyanobacterial Phytochromes in Optogenetics.

green red Phytochromes Review
intechopen, 7 Jul 2021 DOI: 10.5772/intechopen.97522 Link to full text
Abstract: Optogenetics initially used plant photoreceptors to monitor neural circuits, later it has expanded to include engineered plant photoreceptors. Recently photoreceptors from bacteria, algae and cyanobacteria have been used as an optogenetic tool. Bilin-based photoreceptors are common light-sensitive photoswitches in plants, algae, bacteria and cyanobacteria. Here we discuss the photoreceptors from cyanobacteria. Several new photoreceptors have been explored in cyanobacteria which are now proposed as cyanobacteriochrome. The domains in the cyanobacteriochrome, light-induced signaling transduction, photoconversion, are the most attractive features for the optogenetic system. The wider spectral feature of cyanobacteriochrome from UV to visible radiation makes it a light potential sensitive optogenetic tool. Besides, cyanobacterial phytochrome responses to yellow, orange and blue light have more application in optogenetics. This chapter summarizes the photoconversion, phototaxis, cell aggregation, cell signaling mediated by cyanobacteriochrome and cyanophytochrome. As there is a wide range of cyanobacteriochrome and its combination delivers a varied light-sensitive response. Besides coordination among cyanobacteriochromes in cell signaling reduces the engineering of photoreceptors for the optogenetic system.
656.

Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells.

blue AsLOV2 VVD HEK293
J Vis Exp, 6 Jul 2021 DOI: 10.3791/62109 Link to full text
Abstract: Reliable gene expression control in mammalian cells requires tools with high fold change, low noise, and determined input-to-output transfer functions, regardless of the method used. Toward this goal, optogenetic gene expression systems have gained much attention over the past decade for spatiotemporal control of protein levels in mammalian cells. However, most existing circuits controlling light-induced gene expression vary in architecture, are expressed from plasmids, and utilize variable optogenetic equipment, creating a need to explore characterization and standardization of optogenetic components in stable cell lines. Here, the study provides an experimental pipeline of reliable gene circuit construction, integration, and characterization for controlling light-inducible gene expression in mammalian cells, using a negative feedback optogenetic circuit as a case example. The protocols also illustrate how standardizing optogenetic equipment and light regimes can reliably reveal gene circuit features such as gene expression noise and protein expression magnitude. Lastly, this paper may be of use for laboratories unfamiliar with optogenetics who wish to adopt such technology. The pipeline described here should apply for other optogenetic circuits in mammalian cells, allowing for more reliable, detailed characterization and control of gene expression at the transcriptional, proteomic, and ultimately phenotypic level in mammalian cells.
657.

O-GlcNAc modification of nuclear pore complexes accelerates bidirectional transport.

blue AsLOV2 U-2 OS
J Cell Biol, 5 Jul 2021 DOI: 10.1083/jcb.202010141 Link to full text
Abstract: Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated transport of proteins in both directions, and decreasing modification slowed transport. Superresolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the nonspecific permeability of the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.
658.

Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.

blue EL222 E. coli Signaling cascade control
Lancet Infect Dis, 5 Jul 2021 DOI: 10.1016/j.cej.2021.130842 Link to full text
Abstract: Engineered anaerobic bacteria known as live biotherapeutic products (LBPs) have shown great advances in cancer therapy. One advantage of anaerobic bacteria as drug carrier is that it spontaneously target to tumor and persistently release anti-tumor factors. To realize effective anti-cancer therapeutics, one essential premise is to improve the controllability of treatment. Here, we designed near-infrared (NIR)-light responsive bacteria as anti-tumor agent, which is based on a blue-light responsive module and upconversion nanoparticles. The upconversion nanoparticles converted external NIR light to local blue light to noninvasively activate blue-light responsive module (EL222) in engineered LBPs. The activated LBPs then produce tumor necrosis factor α (TNFα) for precise tumor ablation. In vitro and in vivo results have proven that this engineered NIR-light-responsive bacteria could efficiently inhibit tumor growth. We anticipate that this controllable and safe bacteria-based therapy can facilitate the application of LBPs to accurately and effectively regulate diseases.
659.

SPARK: A Transcriptional Assay for Recording Protein-Protein Interactions in a Defined Time Window.

blue AsLOV2 HEK293T
Curr Protoc, Jul 2021 DOI: 10.1002/cpz1.190 Link to full text
Abstract: Protein-protein interactions (PPIs) are ubiquitously involved in cellular processes such as gene expression, enzymatic catalysis, and signal transduction. To study dynamic PPIs, real-time methods such as Förster resonance energy transfer and bioluminescence resonance energy transfer can provide high temporal resolution, but they only allow PPI detection in a limited area at a time and do not permit post-PPI analysis or manipulation of the cells. Integration methods such as the yeast two-hybrid system and split protein systems integrate PPI signals over time and allow subsequent analysis, but they lose information on dynamics. To address some of these limitations, an assay named SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics) has recently been published. Similar to many existing integrators, SPARK converts PPIs into a transcriptional signal. SPARK, however, also adds blue light as a co-stimulus to achieve temporal gating; SPARK only records PPIs during light stimulation. Here, we describe the procedures for using SPARK assays to study a dynamic PPI of interest, including designing DNA constructs and optimization in HEK293T/17 cell cultures. These protocols are generally applicable to various PPI partners and can be used in different biological contexts. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Designing DNA constructs for SPARK Basic Protocol 2: Performing the SPARK assay in HEK293T/17 cell cultures Support Protocol 1: Lentivirus preparation Support Protocol 2: Immunostaining of SPARK components.
660.

Spatiotemporal Regulation of Cell–Cell Adhesions.

blue green red Cobalamin-binding domains Cryptochromes LOV domains Phytochromes Review
intechopen, 29 Jun 2021 DOI: 10.5772/intechopen.97009 Link to full text
Abstract: Cell–cell adhesions are fundamental in regulating multicellular behavior and lie at the center of many biological processes from embryoid development to cancer development. Therefore, controlling cell–cell adhesions is fundamental to gaining insight into these phenomena and gaining tools that would help in the bioartificial construction of tissues. For addressing biological questions as well as bottom-up tissue engineering the challenge is to have multiple cell types self-assemble in parallel and organize in a desired pattern from a mixture of different cell types. Ideally, different cell types should be triggered to self-assemble with different stimuli without interfering with the other and different types of cells should sort out in a multicellular mixture into separate clusters. In this chapter, we will summarize the developments in photoregulation cell–cell adhesions using non-neuronal optogenetics. Among the concepts, we will cover is the control of homophylic and heterophilic cell–cell adhesions, the independent control of two different types with blue or red light and the self-sorting of cells into distinct structures and the importance of cell–cell adhesion dynamics. These tools will give an overview of how the spatiotemporal regulation of cell–cell adhesion gives insight into their role and how tissues can be assembled from cells as the basic building block.
661.

Mechanical Frustration of Phase Separation in the Cell Nucleus by Chromatin.

blue iLID U-2 OS Organelle manipulation
Phys Rev Lett, 25 Jun 2021 DOI: 10.1103/physrevlett.126.258102 Link to full text
Abstract: Liquid-liquid phase separation is a fundamental mechanism underlying subcellular organization. Motivated by the striking observation that optogenetically generated droplets in the nucleus display suppressed coarsening dynamics, we study the impact of chromatin mechanics on droplet phase separation. We combine theory and simulation to show that cross-linked chromatin can mechanically suppress droplets' coalescence and ripening, as well as quantitatively control their number, size, and placement. Our results highlight the role of the subcellular mechanical environment on condensate regulation.
662.

Single-component near-infrared optogenetic systems for gene transcription regulation.

red iLight E. coli HeLa mouse in vivo primary mouse hippocampal neurons Transgene expression
Nat Commun, 23 Jun 2021 DOI: 10.1038/s41467-021-24212-7 Link to full text
Abstract: Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing.
663.

TOR signaling regulates liquid phase separation of the SMN complex governing snRNP biogenesis.

blue CRY2/CRY2 HeLa Signaling cascade control Organelle manipulation
Cell Rep, 22 Jun 2021 DOI: 10.1016/j.celrep.2021.109277 Link to full text
Abstract: The activity of the SMN complex in promoting the assembly of pre-mRNA processing UsnRNPs correlates with condensation of the complex in nuclear Cajal bodies. While mechanistic details of its activity have been elucidated, the molecular basis for condensation remains unclear. High SMN complex phosphorylation suggests extensive regulation. Here, we report on systematic siRNA-based screening for modulators of the capacity of SMN to condense in Cajal bodies and identify mTOR and ribosomal protein S6 kinase β-1 as key regulators. Proteomic analysis reveals TOR-dependent phosphorylations in SMN complex subunits. Using stably expressed or optogenetically controlled phospho mutants, we demonstrate that serine 49 and 63 phosphorylation of human SMN controls the capacity of the complex to condense in Cajal bodies via liquid-liquid phase separation. Our findings link SMN complex condensation and UsnRNP biogenesis to cellular energy levels and suggest modulation of TOR signaling as a rational concept for therapy of the SMN-linked neuromuscular disorder spinal muscular atrophy.
664.

Positive feedback between the T cell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch.

blue CRY2/CRY2 iLID HEK293T Jurkat NIH/3T3 SYF Signaling cascade control Organelle manipulation
Cell Rep, 22 Jun 2021 DOI: 10.1016/j.celrep.2021.109280 Link to full text
Abstract: Protein clustering is pervasive in cell signaling, yet how signaling from higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. We present an optogenetic approach to switch between oligomers and heterodimers with a single point mutation. We apply this system to study signaling from the kinase Zap70 and its substrate linker for activation of T cells (LAT), proteins that normally form membrane-localized condensates during T cell activation. We find that fibroblasts expressing synthetic Zap70:LAT clusters activate downstream signaling, whereas one-to-one heterodimers do not. We provide evidence that clusters harbor a positive feedback loop among Zap70, LAT, and Src-family kinases that binds phosphorylated LAT and further activates Zap70. Finally, we extend our optogenetic approach to the native T cell signaling context, where light-induced LAT clustering is sufficient to drive a calcium response. Our study reveals a specific signaling function for protein clusters and identifies a biochemical circuit that robustly senses protein oligomerization state.
665.

Endosomal cAMP production broadly impacts the cellular phosphoproteome.

blue bPAC (BlaC) HEK293 Immediate control of second messengers
J Biol Chem, 21 Jun 2021 DOI: 10.1016/j.jbc.2021.100907 Link to full text
Abstract: Endosomal signaling downstream of G protein-coupled receptors (GPCRs) has emerged as a novel paradigm with important pharmacological and physiological implications. However, our knowledge of the functional consequences of intracellular signaling is incomplete. To begin to address this gap, we combined an optogenetic approach for site-specific generation of the prototypical second messenger generated by active GPCRs, cyclic AMP (cAMP), with unbiased mass spectrometry-based analysis of the phosphoproteome. We identified 218 unique, high-confidence sites whose phosphorylation is either increased or decreased in response to cAMP elevation. We next determined that the same amount of cAMP produced from the endosomal membrane led to more robust changes in phosphorylation than the plasma membrane. Remarkably, this was true for the entire repertoire of 218 identified targets, and irrespective of their annotated sub-cellular localizations (endosome, cell surface, nucleus, cytosol). Furthermore, we identified a particularly strong endosome bias for a subset of proteins that are dephosphorylated in response to cAMP. Through bioinformatics analysis, we established these targets as putative substrates for protein phosphatase 2A (PP2A), and we propose compartmentalized activation of PP2A by cAMP-responsive kinases as the likely underlying mechanism. Altogether, our study extends the concept that endosomal signaling is a significant functional contributor to cellular responsiveness to cAMP by establishing a unique role for localized cAMP production in defining categorically distinct phosphoresponses.
666.

Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey.

blue iLID in vitro Extracellular optogenetics
ACS Nano, 21 Jun 2021 DOI: 10.1021/acsnano.1c01600 Link to full text
Abstract: Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
667.

mem-iLID, a fast and economic protein purification method.

blue bPAC (BlaC) iLID E. coli Xenopus oocytes
Biosci Rep, 18 Jun 2021 DOI: 10.1042/bsr20210800 Link to full text
Abstract: Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system iLID, which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the protein of interest, which could potentially facilitate other optogenetic manipulations of protein-protein interaction.
668.

A Light-Oxygen-Voltage Receptor Integrates Light and Temperature.

blue PtAU1-LOV RsLOV VfAU1-LOV VVD E. coli HEK293T
J Mol Biol, 17 Jun 2021 DOI: 10.1016/j.jmb.2021.167107 Link to full text
Abstract: Sensory photoreceptors enable organisms to adjust their physiology, behavior, and development in response to light, generally with spatiotemporal acuity and reversibility. These traits underlie the use of photoreceptors as genetically encoded actuators to alter by light the state and properties of heterologous organisms. Subsumed as optogenetics, pertinent approaches enable regulating diverse cellular processes, not least gene expression. Here, we controlled the widely used Tet repressor by coupling to light-oxygen-voltage (LOV) modules that either homodimerize or dissociate under blue light. Repression could thus be elevated or relieved, and consequently protein expression was modulated by light. Strikingly, the homodimeric RsLOV module from Rhodobacter sphaeroides not only dissociated under light but intrinsically reacted to temperature. The limited light responses of wild-type RsLOV at 37 °C were enhanced in two variants that exhibited closely similar photochemistry and structure. One variant improved the weak homodimerization affinity of 40 µM by two-fold and thus also bestowed light sensitivity on a receptor tyrosine kinase. Certain photoreceptors, exemplified by RsLOV, can evidently moonlight as temperature sensors which immediately bears on their application in optogenetics and biotechnology. Properly accounted for, the temperature sensitivity can be leveraged for the construction of signal-responsive cellular circuits.
669.

What sugar does to your pores.

blue LOV domains Review
J Cell Biol, 16 Jun 2021 DOI: 10.1083/jcb.202105163 Link to full text
Abstract: FG-repeat nucleoporins at the center of the nuclear pore complex (NPC) are highly modified with O-GlcNAc. In this issue, Yoo and Mitchison (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202010141) use optogenetic probes to show that O-GlcNAc enhances permeability of the NPC, accelerating transport in both directions.
670.

Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors.

red PhyB/PIF6 A-431 A549 CHO-K1 HEK293T HeLa MDA-MB-231 MDA-MB-453 SK-OV-3 Extracellular optogenetics
Sci Adv, 16 Jun 2021 DOI: 10.1126/sciadv.abf0797 Link to full text
Abstract: Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
671.

Capicua is a fast-acting transcriptional brake.

cyan pdDronpa1 D. melanogaster in vivo Endogenous gene expression
Curr Biol, 15 Jun 2021 DOI: 10.1016/j.cub.2021.05.061 Link to full text
Abstract: Even though transcriptional repressors are studied with ever-increasing molecular resolution, the temporal aspects of gene repression remain poorly understood. Here, we address the dynamics of transcriptional repression by Capicua (Cic), which is essential for normal development and is commonly mutated in human cancers and neurodegenerative diseases.1,2 We report the speed limit for Cic-dependent gene repression based on live imaging and optogenetic perturbations in the early Drosophila embryo, where Cic was originally discovered.3 Our measurements of Cic concentration and intranuclear mobility, along with real-time monitoring of the activity of Cic target genes, reveal remarkably fast transcriptional repression within minutes of removing an optogenetic de-repressive signal. In parallel, quantitative analyses of transcriptional bursting of Cic target genes support a repression mechanism providing a fast-acting brake on burst generation. This work sets quantitative constraints on potential mechanisms for gene regulation by Cic.
672.

Optogenetic model reveals cell shape regulation through FAK and Fascin.

blue iLID NIH/3T3 RAW264.7 Control of cytoskeleton / cell motility / cell shape
J Cell Sci, 11 Jun 2021 DOI: 10.1242/jcs.258321 Link to full text
Abstract: Cell shape regulation is important but the mechanisms that govern shape are not fully understood, in part due to limited experimental models where cell shape changes and underlying molecular processes can be rapidly and non-invasively monitored in real time. Here, we use an optogenetic tool to activate RhoA in the middle of mononucleated macrophages to induce contraction, resulting in a side with the nucleus that retains its shape and a non-nucleated side which was unable to maintain its shape and collapsed. In cells overexpressing focal adhesion kinase (FAK), the non-nucleated side exhibited a wide flat morphology and was similar in adhesion area to the nucleated side. In cells overexpressing fascin, an actin bundling protein, the non-nucleated side assumed a spherical shape and was similar in height to the nucleated side. This effect of fascin was also observed in fibroblasts even without inducing furrow formation. Based on these results, we conclude that FAK and fascin work together to maintain cell shape by regulating adhesion area and height, respectively, in different cell types.
673.

Temporal induction of Lhx8 by optogenetic control system for efficient bone regeneration.

blue FKF1/GI HeLa mouse in vivo primary rat BMSCs Cell differentiation
Stem Cell Res Ther, 10 Jun 2021 DOI: 10.1186/s13287-021-02412-8 Link to full text
Abstract: The spatiotemporal regulation of essential genes is crucial for controlling the growth and differentiation of cells in a precise manner during regeneration. Recently, optogenetics was considered as a potent technology for sophisticated regulation of target genes, which might be a promising tool for regenerative medicine. In this study, we used an optogenetic control system to precisely regulate the expression of Lhx8 to promote efficient bone regeneration.
674.

DMA-tudor interaction modules control the specificity of in vivo condensates.

blue CRY2/CRY2 MEF-1 NIH/3T3
Cell, 10 Jun 2021 DOI: 10.1016/j.cell.2021.05.008 Link to full text
Abstract: Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
675.

Temporal integration of inductive cues on the way to gastrulation.

blue iLID D. melanogaster in vivo Developmental processes
Proc Natl Acad Sci U S A, 8 Jun 2021 DOI: 10.1073/pnas.2102691118 Link to full text
Abstract: Markers for the endoderm and mesoderm germ layers are commonly expressed together in the early embryo, potentially reflecting cells' ability to explore potential fates before fully committing. It remains unclear when commitment to a single-germ layer is reached and how it is impacted by external signals. Here, we address this important question in Drosophila, a convenient model system in which mesodermal and endodermal fates are associated with distinct cellular movements during gastrulation. Systematically applying endoderm-inducing extracellular signal-regulated kinase (ERK) signals to the ventral medial embryo-which normally only receives a mesoderm-inducing cue-reveals a critical time window during which mesodermal cell movements and gene expression are suppressed by proendoderm signaling. We identify the ERK target gene huckebein (hkb) as the main cause of the ventral furrow suppression and use computational modeling to show that Hkb repression of the mesoderm-associated gene snail is sufficient to account for a broad range of transcriptional and morphogenetic effects. Our approach, pairing precise signaling perturbations with observation of transcriptional dynamics and cell movements, provides a general framework for dissecting the complexities of combinatorial tissue patterning.
Submit a new publication to our database