Showing 626 - 650 of 1565 results
626.
Rab10-Positive Tubular Structures Represent a Novel Endocytic Pathway That Diverges From Canonical Macropinocytosis in RAW264 Macrophages.
Abstract:
Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.
627.
Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination.
Abstract:
What regulates the spatiotemporal distribution of cell elimination in tissues remains largely unknown. This is particularly relevant for epithelia with high rates of cell elimination where simultaneous death of neighboring cells could impair epithelial sealing. Here, using the Drosophila pupal notum (a single-layer epithelium) and a new optogenetic tool to trigger caspase activation and cell extrusion, we first showed that death of clusters of at least three cells impaired epithelial sealing; yet, such clusters were almost never observed in vivo. Accordingly, statistical analysis and simulations of cell death distribution highlighted a transient and local protective phase occurring near every cell death. This protection is driven by a transient activation of ERK in cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of cells in clusters. This suggests that the robustness of epithelia with high rates of cell elimination is an emerging property of local ERK feedback.
628.
Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury.
-
Kim, S
-
Lee, SA
-
Yoon, H
-
Kim, MY
-
Yoo, JK
-
Ahn, SH
-
Park, CH
-
Park, J
-
Nam, BY
-
Park, JT
-
Han, SH
-
Kang, SW
-
Kim, NH
-
Kim, HS
-
Han, D
-
Yook, JI
-
Choi, C
-
Yoo, TH
Abstract:
Ischemia-reperfusion injury is a major cause of acute kidney injury. Recent studies on the pathophysiology of ischemia-reperfusion-induced acute kidney injury showed that immunologic responses significantly affect kidney ischemia-reperfusion injury and repair. Nuclear factor (NF)-ĸB signaling, which controls cytokine production and cell survival, is significantly involved in ischemia-reperfusion-induced acute kidney injury, and its inhibition can ameliorate ischemic acute kidney injury. Using EXPLOR, a novel, optogenetically engineered exosome technology, we successfully delivered the exosomal super-repressor inhibitor of NF-ĸB (Exo-srIĸB) into B6 wild type mice before/after kidney ischemia-reperfusion surgery, and compared outcomes with those of a control exosome (Exo-Naïve)-injected group. Exo-srIĸB treatment resulted in lower levels of serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin in post-ischemic mice than in the Exo-Naïve treatment group. Systemic delivery of Exo-srIĸB decreased NF-ĸB activity in post-ischemic kidneys and reduced apoptosis. Post-ischemic kidneys showed decreased gene expression of pro-inflammatory cytokines and adhesion molecules with Exo-srIĸB treatment as compared with the control. Intravital imaging confirmed the uptake of exosomes in neutrophils and macrophages. Exo-srIĸB treatment also significantly affected post-ischemic kidney immune cell populations, lowering neutrophil, monocyte/macrophage, and T cell frequencies than those in the control. Thus, modulation of NF-ĸB signaling through exosomal delivery can be used as a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
629.
Bioluminescent Synthetic Cells Communicate with Natural Cells and Self-Activate Light-Responsive Proteins.
-
Adir, O
-
Abel, R
-
Albalak, MR
-
Weiss, LE
-
Chen, G
-
Gruber, A
-
Staufer, O
-
Shklover, J
-
Shainsky-Roitman, J
-
Platzman, I
-
Gepstein, L
-
Shechtman, Y
-
Horwitz, BA
-
Schroeder, A
Abstract:
Development of regulated cellular processes and signaling methods in synthetic cells is essential for their integration with living materials. Light is an attractive tool to achieve this, but the limited penetration depth into tissue of visible light restricts its usability for in-vivo applications. Here, we describe the synthesis and application of blue-light-generating synthetic cells using bioluminescence, dismissing the need for an external light source. First, the lipid membrane and internal composition of light-producing synthetic cells were optimized to enable high-intensity emission. Next, we show these cells’ capacity for triggering bioprocesses in natural cells by initiating asexual sporulation of dark-grown mycelial cells of the fungus Trichoderma atroviride in a quorum-sensing like mechanism. Finally, we demonstrate regulated transcription and membrane recruitment in synthetic cells using bioluminescent self-activating fusion proteins. These functionalities pave the way for deploying synthetic cells as embeddable microscale light sources that are capable of activating engineered processes inside tissues.
630.
Synthetic biology as driver for the biologization of materials sciences.
-
Burgos-Morales, O
-
Gueye, M
-
Lacombe, L
-
Nowak, C
-
Schmachtenberg, R
-
Hörner, M
-
Jerez-Longres, C
-
Mohsenin, H
-
Wagner, HJ
-
Weber, W
Abstract:
Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
631.
A photo-switchable yeast isocitrate dehydrogenase to control metabolic flux through the citric acid cycle.
Abstract:
For various research questions in metabolism, it is highly desirable to have means available, with which the flux through specific pathways can be perturbed dynamically, in a reversible manner, and at a timescale that is consistent with the fast turnover rates of metabolism. Optogenetics, in principle, offers such possibility. Here, we developed an initial version of a photo-switchable isocitrate dehydrogenase (IDH) aimed at controlling the metabolic flux through the citric acid cycle in budding yeast. By inserting a protein-based light switch (LOV2) into computationally identified active/regulatory-coupled sites of IDH and by using in vivo screening in Saccharomyces cerevisiae, we obtained a number of IDH enzymes whose activity can be switched by light. Subsequent in-vivo characterization and optimization resulted in an initial version of photo-switchable (PS) IDH. While further improvements of the enzyme are necessary, our study demonstrates the efficacy of the overall approach from computational design, via in vivo screening and characterization. It also represents one of the first few examples, where optogenetics were used to control the activity of a metabolic enzyme.
632.
Optogenetic Control of the Canonical Wnt Signaling Pathway During Xenopus laevis Embryonic Development.
Abstract:
Optogenetics uses light-inducible protein-protein interactions to precisely control the timing, localization, and intensity of signaling activity. The precise spatial and temporal resolution of this emerging technology has proven extremely attractive to the study of embryonic development, a program faithfully replicated to form the same organism from a single cell. We have previously performed a comparative study for optogenetic activation of receptor tyrosine kinases, where we found that the cytoplasm-to-membrane translocation-based optogenetic systems outperform the membrane-anchored dimerization systems in activating the receptor tyrosine kinase signaling in live Xenopus embryos. Here, we determine if this engineering strategy can be generalized to other signaling pathways involving membrane-bound receptors. As a proof of concept, we demonstrate that the cytoplasm-to-membrane translocation of the low-density lipoprotein receptor-related protein-6 (LRP6), a membrane-bound coreceptor for the canonical Wnt pathway, triggers Wnt activity. Optogenetic activation of LRP6 leads to axis duplication in developing Xenopus embryos, indicating that the cytoplasm-to-membrane translocation of the membrane-bound receptor could be a generalizable strategy for the construction of optogenetic systems.
633.
Pathogenic ACVR1R206H activation by Activin A-induced receptor clustering and autophosphorylation.
-
Ramachandran, A
-
Mehić, M
-
Wasim, L
-
Malinova, D
-
Gori, I
-
Blaszczyk, BK
-
Carvalho, DM
-
Shore, EM
-
Jones, C
-
Hyvönen, M
-
Tolar, P
-
Hill, CS
Abstract:
Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-β family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.
634.
Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement.
Abstract:
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
635.
Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
Abstract:
Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.
636.
Optogenetic-induced multimerization of the dopamine transporter increases uptake and trafficking to the plasma membrane.
Abstract:
The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine (METH) and cocaine (COC), have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with a mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after METH and nomifensine (NOM) treatment. Blue light induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.
637.
Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster.
Abstract:
Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo.
638.
Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering.
-
He, L
-
Tan, P
-
Zhu, L
-
Huang, K
-
Nguyen, NT
-
Wang, R
-
Guo, L
-
Li, L
-
Yang, Y
-
Huang, Z
-
Huang, Y
-
Han, G
-
Wang, J
-
Zhou, Y
Abstract:
Plant-based photosensors, such as the light-oxygen-voltage sensing domain 2 (LOV2) from oat phototropin 1, can be modularly wired into cell signaling networks to remotely control protein activity and physiological processes. However, the applicability of LOV2 is hampered by the limited choice of available caging surfaces and its preference to accommodate the effector domains downstream of the C-terminal Jα helix. Here, we engineered a set of LOV2 circular permutants (cpLOV2) with additional caging capabilities, thereby expanding the repertoire of genetically encoded photoswitches to accelerate the design of optogenetic devices. We demonstrate the use of cpLOV2-based optogenetic tools to reversibly gate ion channels, antagonize CRISPR-Cas9-mediated genome engineering, control protein subcellular localization, reprogram transcriptional outputs, elicit cell suicide and generate photoactivatable chimeric antigen receptor T cells for inducible tumor cell killing. Our approach is widely applicable for engineering other photoreceptors to meet the growing need of optogenetic tools tailored for biomedical and biotechnological applications.
639.
Optogenetic Control of Non-Apoptotic Cell Death.
-
He, L
-
Huang, Z
-
Huang, K
-
Chen, R
-
Nguyen, NT
-
Wang, R
-
Cai, X
-
Huang, Z
-
Siwko, S
-
Walker, JR
-
Han, G
-
Zhou, Y
-
Jing, J
Abstract:
Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
640.
Endothelial cell invasion is controlled by dactylopodia.
-
Figueiredo, AM
-
Barbacena, P
-
Russo, A
-
Vaccaro, S
-
Ramalho, D
-
Pena, A
-
Lima, AP
-
Ferreira, RR
-
Fidalgo, MA
-
El-Marjou, F
-
Carvalho, Y
-
Vasconcelos, FF
-
Lennon-Dumenil, AM
-
Vignjevic, DM
-
Franco, CA
Abstract:
Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.
641.
Quantifying persistence in the T-cell signaling network using an optically controllable antigen receptor.
Abstract:
T cells discriminate between healthy and infected cells with remarkable sensitivity when mounting an immune response, which is hypothesized to depend on T cells combining stimuli from multiple antigen-presenting cell interactions into a more potent response. To quantify the capacity for T cells to accomplish this, we have developed an antigen receptor that is optically tunable within cell conjugates, providing control over the duration, and intensity of intracellular T-cell signaling. We observe limited persistence within the T-cell intracellular network on disruption of receptor input, with signals dissipating entirely in ~15 min, and directly show sustained proximal receptor signaling is required to maintain gene transcription. T cells thus primarily accumulate the outputs of gene expression rather than integrate discrete intracellular signals. Engineering optical control in a clinically relevant chimeric antigen receptor (CAR), we show that this limited signal persistence can be exploited to increase CAR-T cell activation threefold using pulsatile stimulation. Our results are likely to apply more generally to the signaling dynamics of other cellular networks.
642.
The Rise of Molecular Optogenetics.
Abstract:
Abstract not available.
643.
Vertebrate cells differentially interpret ciliary and extraciliary cAMP.
Abstract:
Hedgehog pathway components and select G protein-coupled receptors (GPCRs) localize to the primary cilium, an organelle specialized for signal transduction. We investigated whether cells distinguish between ciliary and extraciliary GPCR signaling. To test whether ciliary and extraciliary cyclic AMP (cAMP) convey different information, we engineered optogenetic and chemogenetic tools to control the subcellular site of cAMP generation. Generating equal amounts of ciliary and cytoplasmic cAMP in zebrafish and mammalian cells revealed that ciliary cAMP, but not cytoplasmic cAMP, inhibited Hedgehog signaling. Modeling suggested that the distinct geometries of the cilium and cell body differentially activate local effectors. The search for effectors identified a ciliary pool of protein kinase A (PKA). Blocking the function of ciliary PKA, but not extraciliary PKA, activated Hedgehog signal transduction and reversed the effects of ciliary cAMP. Therefore, cells distinguish ciliary and extraciliary cAMP using functionally and spatially distinct pools of PKA, and different subcellular pools of cAMP convey different information.
644.
Dynamics and heterogeneity of Erk-induced immediate-early gene expression.
Abstract:
Many canonical signaling pathways exhibit complex time-varying responses, yet how minutes-timescale pulses of signaling interact with the dynamics of transcription and gene expression remains poorly understood. Erk-induced immediate early gene (IEG) expression is a model of this interface, exemplifying both dynamic pathway activity and a rapid, potent transcriptional response. Here, we quantitatively characterize IEG expression downstream of dynamic Erk stimuli in individual cells. We find that IEG expression responds rapidly to acute changes in Erk activity, but only in a sub-population of stimulus-responsive cells. We find that while Erk activity partially predicts IEG expression, a majority of response heterogeneity is independent of Erk and can be rapidly tuned by different mitogenic stimuli and parallel signaling pathways. We extend our findings to an in vivo context, the mouse epidermis, where we observe heterogenous immediate-early gene accumulation in both fixed tissue and single-cell RNA-sequencing data. Our results demonstrate that signaling dynamics can be faithfully transmitted to gene expression and suggest that the signaling-responsive population is an important parameter for interpreting gene expression responses.
645.
PIP2 regulation of TRPC5 channel activation and desensitization.
Abstract:
Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney, and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as Focal Segmental Glomerular Sclerosis (FSGS). TRPC5 channels are activated by elevated levels of extracellular Ca2+or lanthanide ions, but also by G protein (Gq/11) stimulation. Phosphatidylinositol bisphosphate (PIP2) hydrolysis by phospholipase C (PLC) enzymes leads to protein kinase C (PKC)-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Using whole-cell patch clamp, we employed an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition as well as the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity, and to illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.
646.
Engineering AraC to make it responsive to light instead of arabinose.
-
Romano, E
-
Baumschlager, A
-
Akmeriç, EB
-
Palanisamy, N
-
Houmani, M
-
Schmidt, G
-
Öztürk, MA
-
Ernst, L
-
Khammash, M
-
Di Ventura, B
Abstract:
The L-arabinose-responsive AraC and its cognate PBAD promoter underlie one of the most often used chemically inducible prokaryotic gene expression systems in microbiology and synthetic biology. Here, we change the sensing capability of AraC from L-arabinose to blue light, making its dimerization and the resulting PBAD activation light-inducible. We engineer an entire family of blue light-inducible AraC dimers in Escherichia coli (BLADE) to control gene expression in space and time. We show that BLADE can be used with pre-existing L-arabinose-responsive plasmids and strains, enabling optogenetic experiments without the need to clone. Furthermore, we apply BLADE to control, with light, the catabolism of L-arabinose, thus externally steering bacterial growth with a simple transformation step. Our work establishes BLADE as a highly practical and effective optogenetic tool with plug-and-play functionality-features that we hope will accelerate the broader adoption of optogenetics and the realization of its vast potential in microbiology, synthetic biology and biotechnology.
647.
Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells.
Abstract:
Compartmentation of proteins into biomolecular condensates or membraneless organelles formed by phase separation is an emerging principle for the regulation of cellular processes. Creating synthetic condensates that accommodate specific intracellular proteins on demand would have various applications in chemical biology, cell engineering, and synthetic biology. Here, we report the construction of synthetic protein condensates capable of recruiting and/or releasing proteins of interest in living mammalian cells in response to a small molecule or light. By a modular combination of a tandem fusion of two oligomeric proteins, which forms phase-separated synthetic protein condensates in cells, with a chemically induced dimerization tool, we first created a chemogenetic protein condensate system that can rapidly recruit target proteins from the cytoplasm to the condensates by addition of a small-molecule dimerizer. We next coupled the protein-recruiting condensate system with an engineered proximity-dependent protease, which gave a second protein condensate system wherein target proteins previously expressed inside the condensates are released into the cytoplasm by small-molecule-triggered protease recruitment. Furthermore, an optogenetic condensate system that allows reversible release and sequestration of protein activity in a repeatable manner using light was constructed successfully. These condensate systems were applicable to control protein activity and cellular processes such as membrane ruffling and ERK signaling in a time scale of minutes. This proof-of-principle work provides a new platform for chemogenetic and optogenetic control of protein activity in mammalian cells and represents a step toward tailor-made engineering of synthetic protein condensate-based soft materials with various functionalities for biological and biomedical applications.
648.
Optogenetic-based Localization of Talin to the Plasma Membrane Promotes Activation of β3 Integrins.
Abstract:
Interaction of talin with the cytoplasmic tails of integrin β triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin knockout mice, loss of talin interaction with platelet integrin αIIbβ3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVβ3 affects angiogenesis. In normal cells, talin is auto-inhibited and localized in the cytoplasm. Here we employed an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (CRY2 fused to the N-terminus of talin; CIBN-CAAX) responsive to 450 nm (blue) light was inserted into CHO cells and endothelial cells also expressing αIIbβ3 or αVβ3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of CRY2-talin to the CIBN-CAAX-decorated plasma membrane. This resulted in β3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Rap1-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated β3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in β3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.
649.
Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease.
-
Ingles-Prieto, A
-
Furthmann, N
-
Crossman, SH
-
Tichy, AM
-
Hoyer, N
-
Petersen, M
-
Zheden, V
-
Biebl, J
-
Reichhart, E
-
Gyoergy, A
-
Siekhaus, DE
-
Soba, P
-
Winklhofer, KF
-
Janovjak, H
Abstract:
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson's disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.
650.
Rac1 activation can generate untemplated, lamellar membrane ruffles.
Abstract:
Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions.