Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 526 - 550 of 1031 results
526.

Optogenetics and CRISPR: A New Relationship Built to Last.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_18 Link to full text
Abstract: Since the breakthrough discoveries that CRISPR-Cas9 nucleases can be easily programmed and employed to induce targeted double-strand breaks in mammalian cells, the gene editing field has grown exponentially. Today, CRISPR technologies based on engineered class II CRISPR effectors facilitate targeted modification of genes and RNA transcripts. Moreover, catalytically impaired CRISPR-Cas variants can be employed as programmable DNA binding domains and used to recruit effector proteins, such as transcriptional regulators, epigenetic modifiers or base-modifying enzymes, to selected genomic loci. The juxtaposition of CRISPR and optogenetics enables spatiotemporally confined and highly dynamic genome perturbations in living cells and animals and holds unprecedented potential for biology and biomedicine.Here, we provide an overview of the state-of-the-art methods for light-control of CRISPR effectors. We will detail the plethora of exciting applications enabled by these systems, including spatially confined genome editing, timed activation of endogenous genes, as well as remote control of chromatin-chromatin interactions. Finally, we will discuss limitations of current optogenetic CRISPR tools and point out routes for future innovation in this emerging field.
527.

Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Methods Mol Biol, 11 Jul 2020 DOI: 10.1007/978-1-0716-0755-8_2 Link to full text
Abstract: G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision.
528.

Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury.

blue Magnets E. coli
ACS Sens, 8 Jul 2020 DOI: 10.1021/acssensors.0c00855 Link to full text
Abstract: We present a new concept for whole-cell biosensors that couples the response to Hg2+ with bioluminescence and bacterial aggregation. This allows us to use the bacterial aggregation to preconcentrate the bioluminescent bacteria at the substrate surface and increase the sensitivity of Hg2+ detection. This whole-cell biosensor combines a Hg2+-sensitive bioluminescence reporter and light-responsive bacterial cell-cell adhesions. We demonstrate that the blue luminescence in response to Hg2+ is able to photoactivate bacterial aggregation, which provides a second readout for Hg2+ detection. In return, the Hg2+-triggered bacterial aggregation leads to faster sedimentation and more efficient formation of biofilms. At low Hg2+ concentrations, the enrichment of the bacteria in biofilms leads to an up to 10-fold increase in the signal. The activation of photoswitchable proteins with biological light is a new concept in optogenetics, and the presented bacterial biosensor design is transferable to other bioluminescent reporters with particular interest for environmental monitoring.
529.

SynBio and the Boundaries between Functional and Pathogenic RepA-WH1 Bacterial Amyloids.

blue LOV domains Review
mSystems, 30 Jun 2020 DOI: 10.1128/msystems.00553-20 Link to full text
Abstract: Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
530.

Molecular Mechanism of Light-Induced Conformational Switching of the LOV Domain in Aureochrome-1.

blue LOV domains Background
Biochemistry, 29 Jun 2020 DOI: 10.1021/acs.biochem.0c00271 Link to full text
Abstract: Light oxygen voltage-sensing (LOV) domains are widely found in photoreceptor proteins of plants, algae, fungi, and bacteria. Structural studies of LOV domains suggest that Phe and Gln residues located in the proximity of the chromophore undergo conformational changes upon illumination; however, the molecular mechanism associated with activation of the effector domain remains to be elucidated. Photozipper (PZ) protein is an N-terminally truncated aureochrome-1 comprising a LOV domain and a basic leucine zipper domain. Blue light (BL) induces PZ dimerization and subsequently increases its affinity for target DNA. In this study, we prepared PZ mutants with substitutions of F298 and Q317 and performed quantitative analyses in dark and light states. Substitutions of Q317 significantly reduced the light-induced changes in PZ affinity for the target DNA, especially in the case of the high affinities observed in the dark state. Upon illumination, all PZ mutants showed increased affinity for the target sequence, which demonstrated a clear correlation with the dimer fraction of each PZ mutant. These results suggest the existence of a conformational equilibrium and that its shift by a synergistic interaction between the chromophore and protein moiety probably enables BL-regulated switching of aureochrome-1.
531.

Optogenetic control of gene expression in plants in the presence of ambient white light.

blue red EL222 PhyB/PIF6 A. thaliana leaf protoplasts N. benthamiana in vivo Transgene expression Multichromatic
Nat Methods, 29 Jun 2020 DOI: 10.1038/s41592-020-0868-y Link to full text
Abstract: Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
532.

Targeted cell ablation in zebrafish using optogenetic transcriptional control.

blue VVD zebrafish in vivo Transgene expression Cell death
Development, 17 Jun 2020 DOI: 10.1242/dev.183640 Link to full text
Abstract: Cell ablation is a powerful method for elucidating the contributions of individual cell populations to embryonic development and tissue regeneration. Targeted cell loss in whole organisms has been typically achieved through expression of a cytotoxic or prodrug-activating gene product in the cell type of interest. This approach depends on the availability of tissue-specific promoters, and it does not allow further spatial selectivity within the promoter-defined region(s). To address this limitation, we have used the light-inducible GAVPO transactivator in combination with two genetically encoded cell-ablation technologies: the nitroreductase/nitrofuran system and a cytotoxic variant of the M2 ion channel. Our studies establish ablative methods that provide the tissue specificity afforded by cis-regulatory elements and the conditionality of optogenetics. Our studies also demonstrate differences between the nitroreductase and M2 systems that influence their efficacies for specific applications. Using this integrative approach, we have ablated cells in zebrafish embryos with both spatial and temporal control.
533.

Long-Range Optogenetic Control of Axon Guidance Overcomes Developmental Boundaries and Defects.

blue AsLOV2 zebrafish in vivo Control of cytoskeleton / cell motility / cell shape
Dev Cell, 8 Jun 2020 DOI: 10.1016/j.devcel.2020.05.009 Link to full text
Abstract: Axons connect neurons together, establishing the wiring architecture of neuronal networks. Axonal connectivity is largely built during embryonic development through highly constrained processes of axon guidance, which have been extensively studied. However, the inability to control axon guidance, and thus neuronal network architecture, has limited investigation of how axonal connections influence subsequent development and function of neuronal networks. Here, we use zebrafish motor neurons expressing a photoactivatable Rac1 to co-opt endogenous growth cone guidance machinery to precisely and non-invasively direct axon growth using light. Axons can be guided over large distances, within complex environments of living organisms, overriding competing endogenous signals and redirecting axons across potent repulsive barriers to construct novel circuitry. Notably, genetic axon guidance defects can be rescued, restoring functional connectivity. These data demonstrate that intrinsic growth cone guidance machinery can be co-opted to non-invasively build new connectivity, allowing investigation of neural network dynamics in intact living organisms.
534.

Non-neuromodulatory Optogenetic Tools in Zebrafish.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Front Cell Dev Biol, 3 Jun 2020 DOI: 10.3389/fcell.2020.00418 Link to full text
Abstract: The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
535.

Flux controlling technology for central carbon metabolism for efficient microbial bio-production.

blue green LOV domains Phytochromes Review
Curr Opin Biotechnol, 30 May 2020 DOI: 10.1016/j.copbio.2020.04.003 Link to full text
Abstract: Syntheses of many commodities that are produced using microorganisms require cofactors such as ATP and NAD(P)H. Thus, optimization of the flux distribution in central carbon metabolism, which plays a key role in cofactor regeneration, is critical for enhancing the production of the target compounds. Since the intracellular and extracellular conditions change over time in the fermentation process, dynamic control of the metabolic system for maintaining the cellular state appropriately is necessary. Here, we review techniques for detecting the intracellular metabolic state with fluorescent sensors and controlling the flux of central carbon metabolism with optogenetic tools, as well as present a prospect of bio-production processes for fine-tuning the flux distribution.
536.

Twist-dependent ratchet functioning downstream from Dorsal revealed using a light-inducible degron.

blue AsLOV2 D. melanogaster in vivo Developmental processes
Genes Dev, 28 May 2020 DOI: 10.1101/gad.338194.120 Link to full text
Abstract: Graded transcription factors are pivotal regulators of embryonic patterning, but whether their role changes over time is unclear. A light-regulated protein degradation system was used to assay temporal dependence of the transcription factor Dorsal in dorsal-ventral axis patterning of Drosophila embryos. Surprisingly, the high-threshold target gene snail only requires Dorsal input early but not late when Dorsal levels peak. Instead, late snail expression can be supported by action of the Twist transcription factor, specifically, through one enhancer, sna.distal This study demonstrates that continuous input is not required for some Dorsal targets and downstream responses, such as twist, function as molecular ratchets.
537.

Optical Activation of TrkB Signaling.

blue CRY2/CIB1 CRY2/CRY2 VfAU1-LOV NIH/3T3 PC-12 Signaling cascade control Cell differentiation Developmental processes
J Mol Biol, 15 May 2020 DOI: 10.1016/j.jmb.2020.05.002 Link to full text
Abstract: Brain-derived neurotrophic factor (BDNF), via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2 (CRY2), the light-inducible homo-interaction of the intracellular domain of TrkB (iTrkB) in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the CRY2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of iTrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate BDNF/TrkB signaling with tight spatial and temporal control.
538.

LITESEC-T3SS - Light-controlled protein delivery into eukaryotic cells with high spatial and temporal resolution.

blue iLID LOVTRAP HEp-2 Y. enterocolitica Cell death
Nat Commun, 13 May 2020 DOI: 10.1038/s41467-020-16169-w Link to full text
Abstract: Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.
539.

Using optogenetics to tackle systems-level questions of multicellular morphogenesis.

blue red Cryptochromes LOV domains Phytochromes Review
Curr Opin Cell Biol, 11 May 2020 DOI: 10.1016/j.ceb.2020.04.004 Link to full text
Abstract: Morphogenesis of multicellular systems is governed by precise spatiotemporal regulation of biochemical reactions and mechanical forces which together with environmental conditions determine the development of complex organisms. Current efforts in the field aim at decoding the system-level principles underlying the regulation of developmental processes. Toward this goal, optogenetics, the science of regulation of protein function with light, is emerging as a powerful new tool to quantitatively perturb protein function in vivo with unprecedented precision in space and time. In this review, we provide an overview of how optogenetics is helping to address system-level questions of multicellular morphogenesis and discuss future directions.
540.

Light-powered Escherichia coli cell division for chemical production.

blue red BphS EL222 E. coli Cell cycle control Endogenous gene expression Immediate control of second messengers Multichromatic
Nat Commun, 8 May 2020 DOI: 10.1038/s41467-020-16154-3 Link to full text
Abstract: Cell division can perturb the metabolic performance of industrial microbes. The C period of cell division starts from the initiation to the termination of DNA replication, whereas the D period is the bacterial division process. Here, we first shorten the C and D periods of E. coli by controlling the expression of the ribonucleotide reductase NrdAB and division proteins FtsZA through blue light and near-infrared light activation, respectively. It increases the specific surface area to 3.7 μm-1 and acetoin titer to 67.2 g·L-1. Next, we prolong the C and D periods of E. coli by regulating the expression of the ribonucleotide reductase NrdA and division protein inhibitor SulA through blue light activation-repression and near-infrared (NIR) light activation, respectively. It improves the cell volume to 52.6 μm3 and poly(lactate-co-3-hydroxybutyrate) titer to 14.31 g·L-1. Thus, the optogenetic-based cell division regulation strategy can improve the efficiency of microbial cell factories.
541.

Correction to Lancet Infectious Diseases 2020; published online April 29. https://doi.org/10.1016/ S1473-3099(20)30064-5.

blue TULIP C. elegans in vivo
Lancet Infect Dis, 5 May 2020 DOI: 10.1016/j.xpro.2020.100273 Link to full text
Abstract: Abstract not available.
542.

A STIMulating journey into optogenetic engineering.

blue Cryptochromes LOV domains Review
Cell Calcium, 4 May 2020 DOI: 10.1016/j.ceca.2020.102197 Link to full text
Abstract: Genetically-encoded calcium actuators (GECAs) stemmed from STIM1 have enabled optical activation of endogenous ORAI1 channels in both excitable and non-excitable tissues. These GECAs offer new non-invasive means to probe the structure-function relations of calcium channels and wirelessly control the behavior of awake mice.
543.

A Light-Inducible Strain for Genome-Wide Histone Turnover Profiling in Neurospora crassa.

blue VVD N. crassa Epigenetic modification
Genetics, 1 May 2020 DOI: 10.1534/genetics.120.303217 Link to full text
Abstract: In chromatin, nucleosomes are composed of about 146 base pairs of DNA wrapped around a histone octamer, and are highly dynamic structures subject to remodeling and exchange. Histone turnover has previously been implicated in various processes including regulation of chromatin accessibility, segregation of chromatin domains, and dilution of histone marks. Histones in different chromatin environments may turnover at different rates, possibly with functional consequences.Neurospora crassasports a chromatin environment that is more similar to that of higher eukaryotes than yeasts, which have been utilized in the past to explore histone exchange. We constructed a simple light-inducible system to profile histone exchange in N. crassaon a 3xFLAG-tagged histone H3 under the control of the rapidly inducible vvdpromoter. After induction with blue light, incorporation of tagged H3 into chromatin occurred within 20 minutes. Previous studies of histone turnover involved considerably longer incubation periods and relied on a potentially disruptive change of medium for induction. We used this reporter to explore replication-independent histone turnover at genes and examine changes in histone turnover at heterochromatin domains in different heterochromatin mutant strains. In euchromatin, H3-3xFLAG patterns were almost indistinguishable from that observed in wild type in all mutant backgrounds tested, suggesting that loss of heterochromatin machinery has little effect on histone turnover in euchromatin. However, turnover at heterochromatin domains increased with loss of H3K9me3 or HP1, but did not depend on DNA methylation. Our reporter strain provides a simple yet powerful tool to assess histone exchange across multiple chromatin contexts.
544.

Photoactivatable Cre recombinase 3.0 for in vivo mouse applications.

blue CRY2/CIB1 FKF1/GI iLID Magnets HEK293T isolated MEFs mouse in vivo mouse neural progenitor cells
Nat Commun, 1 May 2020 DOI: 10.1038/s41467-020-16030-0 Link to full text
Abstract: Optogenetic genome engineering tools enable spatiotemporal control of gene expression and provide new insight into biological function. Here, we report the new version of genetically encoded photoactivatable (PA) Cre recombinase, PA-Cre 3.0. To improve PA-Cre technology, we compare light-dimerization tools and optimize for mammalian expression using a CAG promoter, Magnets, and 2A self-cleaving peptide. To prevent background recombination caused by the high sequence similarity in the dimerization domains, we modify the codons for mouse gene targeting and viral production. Overall, these modifications significantly reduce dark leak activity and improve blue-light induction developing our new version, PA-Cre 3.0. As a resource, we have generated and validated AAV-PA-Cre 3.0 as well as two mouse lines that can conditionally express PA-Cre 3.0. Together these new tools will facilitate further biological and biomedical research.
545.

Lights, cytoskeleton, action: Optogenetic control of cell dynamics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Cell Biol, 1 May 2020 DOI: 10.1016/j.ceb.2020.03.003 Link to full text
Abstract: Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein-protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.
546.

Nano-positioning and tubuline conformation determine transport of mitochondria along microtubules.

blue TULIP primary mouse hippocampal neurons Control of cytoskeleton / cell motility / cell shape Organelle manipulation
bioRxiv, 28 Apr 2020 DOI: 10.1101/2020.04.27.064766 Link to full text
Abstract: Correct spatiotemporal distribution of organelles and vesicles is crucial for healthy cell functioning and is regulated by intracellular transport mechanisms. Controlled transport of bulky mitochondria is especially important in polarized cells such as neurons that rely on these organelles to locally produce energy and buffer calcium. Mitochondrial transport requires and depends on microtubules which fill much of the available axonal space. How mitochondrial transport is affected by their position within the microtubule bundles is not known. Here, we found that anterograde transport, driven by kinesin motors, is susceptible to the molecular conformation of tubulin both in vitro and in vivo. Anterograde velocities negatively correlate with the density of elongated tubulin dimers, similar to GTP-tubulin, that are more straight and rigid. The impact of the tubulin conformation depends primarily on where a mitochondrion is positioned, either within or at the rim of microtubule bundle. Increasing elongated tubulin levels lowers the number of motile anterograde mitochondria within the microtubule bundle and increases anterograde transport speed at the microtubule bundle rim. We demonstrate that the increased kinesin step processivity on microtubules consisting of elongated dimers underlies increased mitochondrial dynamics. Our work indicates that the molecular conformation of tubulin controls mitochondrial motility and as such locally regulates the distribution of mitochondria along axons.
547.

A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy.

blue VVD 4T1 mouse in vivo Transgene expression Cell death
Acta Pharm Sin B, 27 Apr 2020 DOI: 10.1016/j.apsb.2020.04.010 Link to full text
Abstract: A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and αvβ3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.
548.

Construction of Light-Activated Neurotrophin Receptors Using the Improved Light-Induced Dimerizer (iLID).

blue iLID PC-12 Signaling cascade control
J Mol Biol, 23 Apr 2020 DOI: 10.1016/j.jmb.2020.04.018 Link to full text
Abstract: Receptor tyrosine kinases (RTKs) play crucial roles in human health, and their misregulation is implicated in disorders ranging from neurodegenerative diseases to cancers. The highly conserved mechanism of activation of RTKs makes them especially appealing candidates for control via optogenetic dimerization methods. This work offers a strategy for using the improved Light-Induced Dimer (iLID) system with a constructed tandem-dimer of its binding partner nano (tdnano) to build light-activatable versions of RTKs. In the absence of light, the iLID-RTK is cytosolic, monomeric and inactive. Under blue light, the iLID + tdnano system recruits two copies of iLID-RTK to tdnano, dimerizing and activating the RTK. We demonstrate that iLID opto-iTrkA and opto-iTrkB are capable of reproducing downstream ERK and Akt signaling only in the presence of tdnano. We further show with our opto-iTrkA that the system is compatible with multi-day and population-level activation of TrkA in PC12 cells. By leveraging genetic targeting of tdnano, we achieve RTK activation at a specific subcellular location even with whole-cell illumination, allowing us to confidently probe the impact of context on signaling outcome.
549.

Optogenetic control of excitatory post-synaptic differentiation through neuroligin-1 tyrosine phosphorylation.

blue VfAU1-LOV Cos-7 mouse hippocampal slices Cell differentiation Neuronal activity control
Elife, 23 Apr 2020 DOI: 10.7554/elife.52027 Link to full text
Abstract: Neuroligins (Nlgns) are adhesion proteins mediating trans-synaptic contacts in neurons. However, conflicting results around their role in synaptic differentiation arise from the various techniques used to manipulate Nlgn expression level. Orthogonally to these approaches, we triggered here the phosphorylation of endogenous Nlgn1 in CA1 mouse hippocampal neurons using a photoactivatable tyrosine kinase receptor (optoFGFR1). Light stimulation for 24 hr selectively increased dendritic spine density and AMPA-receptor-mediated EPSCs in wild-type neurons, but not in Nlgn1 knock-out neurons or when endogenous Nlgn1 was replaced by a non-phosphorylatable mutant (Y782F). Moreover, light stimulation of optoFGFR1 partially occluded LTP in a Nlgn1-dependent manner. Combined with computer simulations, our data support a model by which Nlgn1 tyrosine phosphorylation promotes the assembly of an excitatory post-synaptic scaffold that captures surface AMPA receptors. This optogenetic strategy highlights the impact of Nlgn1 intracellular signaling in synaptic differentiation and potentiation, while enabling an acute control of these mechanisms.
550.

Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities.

blue Magnets E. coli Control of cell-cell / cell-material interactions Extracellular optogenetics
ACS Synth Biol, 15 Apr 2020 DOI: 10.1021/acssynbio.0c00054 Link to full text
Abstract: Although the fundamental importance and biotechnological potential of multibacterial communities, also called biofilms, are well-known, our ability to control them is limited. We present a new way of dynamically controlling bacteria-bacteria adhesions by using blue light and how these photoswitchable adhesions can be used to regulate multicellularity and associated bacterial behavior. To achieve this, the photoswitchable proteins nMagHigh and pMagHigh were expressed on bacterial surfaces as adhesins to allow multicellular clusters to assemble under blue light and reversibly disassemble in the dark. Regulation of the bacterial cell-cell adhesions with visible light provides unique advantages including high spatiotemporal control, tunability, and noninvasive remote regulation. Moreover, these photoswitchable adhesions make it possible to regulate collective bacterial functions including aggregation, quorum sensing, biofilm formation, and metabolic cross-feeding between auxotrophic bacteria with light. Overall, the photoregulation of bacteria-bacteria adhesions provides a new way of studying bacterial cell biology and will enable the design of biofilms for biotechnological applications.
Submit a new publication to our database