Showing 526 - 531 of 531 results
526.
Optogenetic control of cells and circuits.
Abstract:
The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.
527.
The cryptochromes: blue light photoreceptors in plants and animals.
-
Chaves, I
-
Pokorny, R
-
Byrdin, M
-
Hoang, N
-
Ritz, T
-
Brettel, K
-
Essen, LO
-
van der Horst, GT
-
Batschauer, A
-
Ahmad, M
Abstract:
Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
528.
Lights on and action! Controlling microbial gene expression by light.
Abstract:
Light-mediated control of gene expression and thus of any protein function and metabolic process in living microbes is a rapidly developing field of research in the areas of functional genomics, systems biology, and biotechnology. The unique physical properties of the environmental factor light allow for an independent photocontrol of various microbial processes in a noninvasive and spatiotemporal fashion. This mini review describes recently developed strategies to generate photo-sensitive expression systems in bacteria and yeast. Naturally occurring and artificial photoswitches consisting of light-sensitive input domains derived from different photoreceptors and regulatory output domains are presented and individual properties of light-controlled expression systems are discussed.
529.
Rapid blue-light-mediated induction of protein interactions in living cells.
Abstract:
Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
530.
The Cryptochrome Blue Light Receptors.
Abstract:
Cryptochromes are photolyase-like blue light receptors originally discovered in Arabidopsis but later found in other
plants, microbes, and animals. Arabidopsis has two cryptochromes, CRY1 and CRY2, which mediate primarily blue light
inhibition of hypocotyl elongation and photoperiodic control of fl oral initiation, respectively. In addition, cryptochromes
also regulate over a dozen other light responses, including circadian rhythms, tropic growth, stomata opening, guard
cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed
cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Cryptochromes
have two domains, the N-terminal PHR (Photolyase-Homologous Region) domain that bind the chromophore
FAD (flavin adenine dinucleotide), and the CCE (CRY C-terminal Extension) domain that appears intrinsically unstructured
but critical to the function and regulation of cryptochromes. Most cryptochromes accumulate in the nucleus,
and they undergo blue light-dependent phosphorylation or ubiquitination. It is hypothesized that photons excite electrons
of the fl avin molecule, resulting in redox reaction or circular electron shuttle and conformational changes of the
photoreceptors. The photoexcited cryptochrome are phosphorylated to adopt an open conformation, which interacts
with signaling partner proteins to alter gene expression at both transcriptional and posttranslational levels and consequently
the metabolic and developmental programs of plants.
531.
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
Abstract:
Cryptochromes (CRY) are photolyase-like blue-light receptors that mediate light responses in plants and animals. How plant cryptochromes act in response to blue light is not well understood. We report here the identification and characterization of the Arabidopsis CIB1 (cryptochrome-interacting basic-helix-loop-helix) protein. CIB1 interacts with CRY2 (cryptochrome 2) in a blue light-specific manner in yeast and Arabidopsis cells, and it acts together with additional CIB1-related proteins to promote CRY2-dependent floral initiation. CIB1 binds to G box (CACGTG) in vitro with a higher affinity than its interaction with other E-box elements (CANNTG). However, CIB1 stimulates FT messenger RNA expression, and it interacts with chromatin DNA of the FT gene that possesses various E-box elements except G box. We propose that the blue light-dependent interaction of cryptochrome(s) with CIB1 and CIB1-related proteins represents an early photoreceptor signaling mechanism in plants.