Showing 26 - 50 of 52 results
26.
Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling.
-
Multamäki, E
-
Nanekar, R
-
Morozov, D
-
Lievonen, T
-
Golonka, D
-
Wahlgren, WY
-
Stucki-Buchli, B
-
Rossi, J
-
Hytönen, VP
-
Westenhoff, S
-
Ihalainen, JA
-
Möglich, A
-
Takala, H
Abstract:
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
27.
Changes in tongue-palatal contact during swallowing in patients with skeletal mandibular prognathism after orthognathic surgery.
Abstract:
This study aimed to evaluate improvement of tongue-palatal contact patterns during swallowing after orthognathic surgery in mandibular prognathism patients. Thirty patients with mandibular prognathism treated by orthognathic surgery (average age of 27 years, 3 months) and 10 controls (average age 29 years, 6 months) participated in this study. Tongue-palatal contact patterns of patients before and three months after surgery were evaluated by electropalatography (EPG) as well as controls. Whole total of tongue-palatal contact at 0.3, 0.2, and 0.1 sec before complete tongue-palatal contact during swallowing were evaluated. The duration of swallowing phases was also examined. Complete contact of tongue-tip in the alveolar part of individual artificial EPG plate were shown at 0.3, 0.2, and 0.1 sec before complete tongue-palatal contact in the controls, although incomplete contact in the alveolar part were shown at 0.3 sec in mandibular prognathism patients. Whole total of tongue-palatal contact at 0.3 and 0.2 sec before complete tongue-palatal contact was significantly lower in the patients before surgery than in the controls (p<0.05). However, these values increased after surgery. The duration of oral and pharyngeal phase was significantly longer in the patients before surgery than in the controls and the patients after surgery (p<0.01). This study demonstrated that the tongue-palatal contact pattern improved and the duration of oral and pharyngeal phase was shortened in mandibular prognathism patients during swallowing after orthognathic surgery. It is suggested that changes in maxillofacial morphology by orthognathic surgery can induce normal tongue movement during swallowing. (The data underlying this study have been uploaded to figshare and are accessible using the following DOI: https://doi.org/10.6084/m9.figshare.14101616.v1).
28.
Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
Abstract:
Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.
29.
Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism.
-
Bandara, S
-
Rockwell, NC
-
Zeng, X
-
Ren, Z
-
Wang, C
-
Shin, H
-
Martin, SS
-
Moreno, MV
-
Lagarias, JC
-
Yang, X
Abstract:
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
30.
Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives.
Abstract:
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub‐micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever‐increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
31.
Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome.
-
Hontani, Y
-
Baloban, M
-
Escobar, FV
-
Jansen, SA
-
Shcherbakova, DM
-
Weißenborn, J
-
Kloz, M
-
Mroginski, MA
-
Verkhusha, VV
-
Kennis, JTM
Abstract:
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
32.
Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity.
-
Huang, Z
-
Li, Z
-
Zhang, X
-
Kang, S
-
Dong, R
-
Sun, L
-
Fu, X
-
Vaisar, D
-
Watanabe, K
-
Gu, L
Abstract:
Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.
33.
Light control of RTK activity: from technology development to translational research.
Abstract:
Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
34.
Illuminating a Phytochrome Paradigm- a Light-Activated Phosphatase in Two-Component Signaling Uncovered.
-
Multamäki, E
-
Nanekar, R
-
Morozov, D
-
Lievonen, T
-
Golonka, D
-
Wahlgren, WY
-
Stucki-Buchli, B
-
Rossi, J
-
Hytönen, VP
-
Westenhoff, S
-
Ihalainen, JA
-
Möglich, A
-
Takala, HA
Abstract:
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.
35.
Bacterial Phytochrome as a Scaffold for Engineering of Receptor Tyrosine Kinases Controlled with Near-Infrared Light.
Abstract:
Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.
36.
Dynamic Properties of the Photosensory Domain of Deinococcus radiodurans Bacteriophytochrome.
Abstract:
Phytochromes are biological photoreceptors found in all kingdoms of life. Numerous physicochemical and spectroscopic studies of phytochromes have been carried out for many decades, both experimentally and computationally, with the main focus on the photoconversion mechanism involving a tetrapyrrole chromophore. In this computational work, we concentrate on the long-scale dynamic motion of the photosensory domain of Deinococcus radiodurans by means of classical all-atom molecular dynamics (MD) simulations. Conventional and accelerated MD methods in combination with two different force fields, CHARMM27 and AMBER ff14SB, are tested in long atomistic simulations to confront the dynamics of monomer and dimer forms. These calculations highlight dissimilar equilibrium conformations in aqueous solutions and, in turn, different large-scale dynamic behaviors of the monomer form vs the dimer form. While the phytochrome in a monomer form tends to close the cavity entailed between the GAF and PHY domains, the opposite trend is predicted for the phytochrome dimer, which opens up as a consequence of the formation of strong salt bridges between the PHY domains of two molecules in water.
37.
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore.
Abstract:
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
38.
Functional Modulation of Receptor Proteins on Cellular Interface with Optogenetic System.
Abstract:
In multicellular organisms, living cells cooperate with each other to exert coordinated complex functions by responding to extracellular chemical or physical stimuli via proteins on the plasma membrane. Conventionally, chemical signal transduction or mechano-transduction has been investigated by chemical, genetic, or physical perturbation; however, these methods cannot manipulate biomolecular reactions at high spatiotemporal resolution. In contrast, recent advances in optogenetic perturbation approaches have succeeded in controlling signal transduction with external light. The methods have enabled spatiotemporal perturbation of the signaling, providing functional roles of the specific proteins. In this chapter, we summarize recent advances in the optogenetic tools that modulate the function of a receptor protein. While most optogenetic systems have been devised for controlling ion channel conductivities, the present review focuses on the other membrane proteins involved in chemical transduction or mechano-transduction. We describe the properties of natural or artificial photoreceptor proteins used in optogenetic systems. Then, we discuss the strategies for controlling the receptor protein functions by external light. Future prospects of optogenetic tool development are discussed.
39.
Strategies for Engineering and Rewiring Kinase Regulation.
Abstract:
Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.
40.
Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star.
-
Yang, J
-
Li, L
-
Shemetov, AA
-
Lee, S
-
Zhao, Y
-
Liu, Y
-
Shen, Y
-
Li, J
-
Oka, Y
-
Verkhusha, VV
-
Wang, LV
Abstract:
Focusing light deep by engineering wavefronts toward guide stars inside scattering media has potential biomedical applications in imaging, manipulation, stimulation, and therapy. However, the lack of endogenous guide stars in biological tissue hinders its translations to in vivo applications. Here, we use a reversibly switchable bacterial phytochrome protein as a genetically encoded photochromic guide star (GePGS) in living tissue to tag photons at targeted locations, achieving light focusing inside the tissue by wavefront shaping. As bacterial phytochrome-based GePGS absorbs light differently upon far-red and near-infrared illumination, a large dynamic absorption contrast can be created to tag photons inside tissue. By modulating the GePGS at a distinctive frequency, we suppressed the competition between GePGS and tissue motions and formed tight foci inside mouse tumors in vivo and acute mouse brain tissue, thus improving light delivery efficiency and specificity. Spectral multiplexing of GePGS proteins with different colors is an attractive possibility.
41.
Elucidating cyclic AMP signaling in subcellular domains with optogenetic tools and fluorescent biosensors.
Abstract:
The second messenger 3',5'-cyclic nucleoside adenosine monophosphate (cAMP) plays a key role in signal transduction across prokaryotes and eukaryotes. Cyclic AMP signaling is compartmentalized into microdomains to fulfil specific functions. To define the function of cAMP within these microdomains, signaling needs to be analyzed with spatio-temporal precision. To this end, optogenetic approaches and genetically encoded fluorescent biosensors are particularly well suited. Synthesis and hydrolysis of cAMP can be directly manipulated by photoactivated adenylyl cyclases (PACs) and light-regulated phosphodiesterases (PDEs), respectively. In addition, many biosensors have been designed to spatially and temporarily resolve cAMP dynamics in the cell. This review provides an overview about optogenetic tools and biosensors to shed light on the subcellular organization of cAMP signaling.
42.
Signal transduction in photoreceptor histidine kinases.
Abstract:
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
43.
Revisiting and Redesigning Light-Activated Cyclic-Mononucleotide Phosphodiesterases.
Abstract:
As diffusible second messengers, cyclic nucleoside monophosphates (cNMPs) relay and amplify molecular signals in myriad cellular pathways. The triggering of downstream physiological responses often requires defined cNMP gradients in time and space, generated through the concerted action of nucleotidyl cyclases and phosphodiesterases (PDEs). In an approach denoted optogenetics, sensory photoreceptors serve as genetically encoded, light-responsive actuators to enable the noninvasive, reversible, and spatiotemporally precise control of manifold cellular processes, including cNMP metabolism. Although nature provides efficient photoactivated nucleotidyl cyclases, light-responsive PDEs are scarce. Through modular recombination of a bacteriophytochrome photosensor and the effector of human PDE2A, we previously generated the light-activated, cNMP-specific PDE LAPD. By pursuing parallel design strategies, we here report a suite of derivative PDEs with enhanced amplitude and reversibility of photoactivation. Opposite to LAPD, far-red light completely reverts prior activation by red light in several PDEs. These improved PDEs thus complement photoactivated nucleotidyl cyclases and extend the sensitivity of optogenetics to red and far-red light. More generally, our study informs future efforts directed at designing bacteriophytochrome photoreceptors.
44.
Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology.
Abstract:
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
45.
Neurotrophin receptor tyrosine kinases regulated with near-infrared light.
Abstract:
Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
46.
Structure-guided design and functional characterization of an artificial red light-regulated guanylate/adenylate cyclase for optogenetic applications.
Abstract:
Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the Deinococcus radiodurans bacteriophytochrome linked to a Synechocystis guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools in vitro and expands our in vivo toolkit, as demonstrated by manipulation of Caenorhabditis elegans locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties.
47.
Distinctive Properties of Dark Reversion Kinetics between Two Red/Green-Type Cyanobacteriochromes and their Application in the Photoregulation of cAMP Synthesis.
Abstract:
Cyanobacteriochromes (CBCRs) are photoreceptors that bind to a linear tetrapyrrole within a conserved cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domain and exhibit reversible photoconversion. Red/green-type CBCR GAF domains that photoconvert between red- (Pr) and green-absorbing (Pg) forms occur widely in various cyanobacteria. A putative phototaxis regulator, AnPixJ, contains multiple red/green-type CBCR GAF domains. We previously reported that AnPixJ's second domain (AnPixJg2) but not its fourth domain (AnPixJg4) shows red/green reversible photoconversion. Herein, we found that AnPixJg4 showed Pr-to-Pg photoconversion and rapid Pg-to-Pr dark reversion, whereas AnPixJg2 showed a barely detectable dark reversion. Site-directed mutagenesis revealed the involvement of six residues in Pg stability. Replacement at the Leu294/Ile660 positions of AnPixJg2/AnPixJg4 showed the highest influence on dark reversion kinetics. AnPixJg2_DR6, wherein the six residues of AnPixJg2 were entirely replaced with those of AnPixJg4, showed a 300-fold faster dark reversion than that of the wild type. We constructed chimeric proteins by fusing the GAF domains with adenylate cyclase catalytic regions, such as AnPixJg2-AC, AnPixJg4-AC and AnPixJg2_DR6-AC. We detected successful enzymatic activation under red light for both AnPixJg2-AC and AnPixJg2_DR6-AC, and repression under green light for AnPixJg2-AC and under dark incubation for AnPixJg2_DR6-AC. These results provide platforms to develop cAMP synthetic optogenetic tools.
48.
Connection between absorption properties and conformational changes in Deinococcus radiodurans phytochrome.
Abstract:
Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined with UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP) and its subdomains. The photosensory unit (DrCBD-PHY) shows an unusually stable Pfr state with minimal dark reversion, whereas the histidine kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrome fragments remain as dimers in the illuminated state and dark state. Still, the elution profiles of all phytochrome fragments differ between the illuminated and dark states. The differences are observed reliably only when the whole UV-vis spectrum is characterized along the elution profile and show more Pfr-state characteristics at later elution volumes in DrBphP and DrCBD-PHY fragments. This implies that the PHY domain has an important role in amplifying and relaying light-induced conformational changes to the HK domain. In the illuminated state, the HK domain appears partially unfolded and prone to form oligomers. The oligomerization of DrBphP can be diminished by converting the molecule back to the resting Pr state by using far-red light.
49.
Red/green cyanobacteriochromes: sensors of color and power.
Abstract:
Phytochromes are red/far-red photoreceptors using cysteine-linked linear tetrapyrrole (bilin) chromophores to regulate biological responses to light. Light absorption triggers photoisomerization of the bilin between the 15Z and 15E photostates. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Several subfamilies of CBCRs have been described. Representatives of one such subfamily, including AnPixJ and NpR6012g4, exhibit red/green photocycles in which the 15Z photostate is red-absorbing like that of phytochrome but the 15E photoproduct is instead green-absorbing. Using recombinant expression of individual CBCR domains in Escherichia coli, we fully survey the red/green subfamily from the cyanobacterium Nostoc punctiforme. In addition to 14 new photoswitching CBCRs, one apparently photochemically inactive protein exhibiting intense red fluorescence was observed. We describe a novel orange/green photocycle in one of these CBCRs, NpF2164g7. Dark reversion varied in this panel of CBCRs; some examples were stable as the 15E photoproduct for days, while others reverted to the 15Z dark state in minutes or even seconds. In the case of NpF2164g7, dark reversion was so rapid that reverse photoconversion of the green-absorbing photoproduct was not significant in restoring the dark state, resulting in a broadband response to light. Our results demonstrate that red/green CBCRs can thus act as sensors for the color or intensity of the ambient light environment.
50.
Phycoviolobilin formation and spectral tuning in the DXCF cyanobacteriochrome subfamily.
Abstract:
Phytochromes are red/far-red photosensory proteins that regulate adaptive responses to light via photoswitching of cysteine-linked linear tetrapyrrole (bilin) chromophores. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. CBCRs and phytochromes share a conserved Cys residue required for bilin attachment. In one CBCR subfamily, often associated with a blue/green photocycle, a second Cys lies within a conserved Asp-Xaa-Cys-Phe (DXCF) motif and is essential for the blue/green photocycle. Such DXCF CBCRs use isomerization of the phycocyanobilin (PCB) chromophore into the related phycoviolobilin (PVB) to shorten the conjugated system for sensing green light. We here use recombinant expression of individual CBCR domains in Escherichia coli to survey the DXCF subfamily from the cyanobacterium Nostoc punctiforme. We describe ten new photoreceptors with well-resolved photocycles and three additional photoproteins with overlapping dark-adapted and photoproduct states. We show that the ability of this subfamily to form PVB or retain PCB provides a powerful mechanism for tuning the photoproduct absorbance, with blue-absorbing dark states leading to a broad range of photoproducts absorbing teal, green, yellow, or orange light. Moreover, we use a novel green/teal CBCR that lacks the blue-absorbing dark state to demonstrate that PVB formation requires the DXCF Cys residue. Our results demonstrate that this subfamily exhibits much more spectral diversity than had been previously appreciated.