Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 50 of 79 results
26.

Locally Activating TrkB Receptor Generates Actin Waves and Specifies Axonal Fate.

blue AsLOV2 CRY2/CRY2 rat hippocampal neurons Control of cytoskeleton / cell motility / cell shape
Cell Chem Biol, 24 Oct 2019 DOI: 10.1016/j.chembiol.2019.10.006 Link to full text
Abstract: Actin waves are filamentous actin (F-actin)-rich structures that initiate in the somato-neuritic area and move toward neurite ends. The upstream cues that initiate actin waves are poorly understood. Here, using an optogenetic approach (Opto-cytTrkB), we found that local activation of the TrkB receptor around the neurite end initiates actin waves and triggers neurite elongation. During actin wave generation, locally activated TrkB signaling in the distal neurite was functionally connected with preferentially localized Rac1 and its signaling pathways in the proximal region. Moreover, TrkB activity changed the location of ankyrinG--the master organizer of the axonal initial segment-and initiated the stimulated neurite to acquire axonal characteristics. Taken together, these findings suggest that local Opto-cytTrkB activation switches the fate from minor to major axonal neurite during neuronal polarization by generating actin waves.
27.

Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light.

violet PhoCl MCF7 MDCK Control of cytoskeleton / cell motility / cell shape
ACS Chem Biol, 20 Sep 2019 DOI: 10.1021/acschembio.9b00460 Link to full text
Abstract: Precise integration of individual cell behaviors is indispensable for collective tissue morphogenesis and maintenance of tissue integrity. Organized multicellular behavior is achieved via mechanical coupling of individual cellular contractility, mediated by cell adhesion molecules at the cell-cell interface. Conventionally, gene depletion or laser microsurgery has been used for functional analysis of intercellular mechanotransduction. Nevertheless, these methods are insufficient to investigate either the spatiotemporal dynamics or the biomolecular contribution in cell-cell mechanical coupling within collective multicellular behaviors. Herein, we present our effort in adaption of PhoCl for attenuation of cell-to-cell tension transmission mediated by E-cadherin. To release intercellular contractile tension applied on E-cadherin molecules with external light, a genetically encoded photocleavable module called PhoCl was inserted into the intracellular domain of E-cadherin, thereby creating photocleavable cadherin (PC-cadherin). In response to light illumination, the PC-cadherin cleaved into two fragments inside cells, resulting in attenuating mechanotransduction at intercellular junctions in living epithelial cells. Light-induced perturbation of the intercellular tension balance with surrounding cells changed the cell shape in an epithelial cell sheet. The method is expected to enable optical manipulation of force-mediated cell-to-cell communications in various multicellular behaviors, which contributes to a deeper understanding of embryogenesis and oncogenesis.
28.

A blue light receptor that mediates RNA binding and translational regulation.

blue PAL E. coli HeLa in vitro
Nat Chem Biol, 26 Aug 2019 DOI: 10.1038/s41589-019-0346-y Link to full text
Abstract: Sensory photoreceptor proteins underpin light-dependent adaptations in nature and enable the optogenetic control of organismal behavior and physiology. We identified the bacterial light-oxygen-voltage (LOV) photoreceptor PAL that sequence-specifically binds short RNA stem loops with around 20 nM affinity in blue light and weaker than 1 µM in darkness. A crystal structure rationalizes the unusual receptor architecture of PAL with C-terminal LOV photosensor and N-terminal effector units. The light-activated PAL-RNA interaction can be harnessed to regulate gene expression at the RNA level as a function of light in both bacteria and mammalian cells. The present results elucidate a new signal-transduction paradigm in LOV receptors and conjoin RNA biology with optogenetic regulation, thereby paving the way toward hitherto inaccessible optoribogenetic modalities.
29.

A split CRISPR-Cpf1 platform for inducible genome editing and gene activation.

blue Magnets HEK293T HeLa mouse in vivo Nucleic acid editing
Nat Chem Biol, 12 Aug 2019 DOI: 10.1038/s41589-019-0338-y Link to full text
Abstract: The CRISPR-Cpf1 endonuclease has recently been demonstrated as a powerful tool to manipulate targeted gene sequences. Here, we performed an extensive screening of split Cpf1 fragments and identified a pair that, combined with inducible dimerization domains, enables chemical- and light-inducible genome editing in human cells. We also identified another split Cpf1 pair that is spontaneously activated. The newly generated amino and carboxyl termini of the spontaneously activated split Cpf1 can be repurposed as de novo fusion sites of artificial effector domains. Based on this finding, we generated an improved split dCpf1 activator, which has the potential to activate endogenous genes more efficiently than a previously established dCas9 activator. Finally, we showed that the split dCpf1 activator can efficiently activate target genes in mice. These results demonstrate that the present split Cpf1 provides an efficient and sophisticated genome manipulation in the fields of basic research and biotechnological applications.
30.

Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.

blue bPAC (BlaC) HEK293T MVD7 Signaling cascade control Immediate control of second messengers
Cell Chem Biol, 23 Jul 2019 DOI: 10.1016/j.chembiol.2019.07.004 Link to full text
Abstract: Because small-molecule activators of adenylyl cyclases (AC) affect ACs cell-wide, it is challenging to explore the signaling consequences of AC activity emanating from specific intracellular compartments. We explored this issue using a series of engineered, optogenetic, spatially restricted, photoactivable adenylyl cyclases (PACs) positioned at the plasma membrane (PM), the outer mitochondrial membrane (OMM), and the nucleus (Nu). The biochemical consequences of brief photostimulation of PAC is primarily limited to the intracellular site occupied by the PAC. By contrast, sustained photostimulation results in distal cAMP signaling. Prolonged cAMP generation at the OMM profoundly stimulates nuclear protein kinase (PKA) activity. We have found that phosphodiesterases 3 (OMM and PM) and 4 (PM) modulate proximal (local) cAMP-triggered activity, whereas phosphodiesterase 4 regulates distal cAMP activity as well as the migration of PKA's catalytic subunit into the nucleus.
31.

Rewiring bacterial two-component systems by modular DNA-binding domain swapping.

green red CcaS/CcaR Cph1 E. coli
Nat Chem Biol, 20 May 2019 DOI: 10.1038/s41589-019-0286-6 Link to full text
Abstract: Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways and valuable sensors for synthetic biology. However, most TCSs remain uncharacterized or difficult to harness for applications. Major challenges are that many TCS output promoters are unknown, subject to cross-regulation, or silent in heterologous hosts. Here, we demonstrate that the two largest families of response regulator DNA-binding domains can be interchanged with remarkable flexibility, enabling the corresponding TCSs to be rewired to synthetic output promoters. We exploit this plasticity to eliminate cross-regulation, un-silence a gram-negative TCS in a gram-positive host, and engineer a system with over 1,300-fold activation. Finally, we apply DNA-binding domain swapping to screen uncharacterized Shewanella oneidensis TCSs in Escherichia coli, leading to the discovery of a previously uncharacterized pH sensor. This work should accelerate fundamental TCS studies and enable the engineering of a large family of genetically encoded sensors with diverse applications.
32.

Light-based control of metabolic flux through assembly of synthetic organelles.

blue CRY2/CRY2 CRY2olig PixD/PixE S. cerevisiae Organelle manipulation
Nat Chem Biol, 13 May 2019 DOI: 10.1038/s41589-019-0284-8 Link to full text
Abstract: To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.
33.

Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.

blue VfAU1-LOV PC-12 Signaling cascade control Cell differentiation
Cell Chem Biol, 27 Dec 2018 DOI: 10.1016/j.chembiol.2018.11.004 Link to full text
Abstract: Nerve growth factor elicits signaling outcomes by interacting with both its high-affinity receptor, TrkA, and its low-affinity receptor, p75NTR. Although these two receptors can regulate distinct cellular outcomes, they both activate the extracellular-signal-regulated kinase pathway upon nerve growth factor stimulation. To delineate TrkA subcircuits in PC12 cell differentiation, we developed an optogenetic system whereby light was used to specifically activate TrkA signaling in the absence of nerve growth factor. By using tyrosine mutants of the optogenetic TrkA in combination with pathway-specific pharmacological inhibition, we find that Y490 and Y785 each contributes to PC12 cell differentiation through the extracellular-signal-regulated kinase pathway in an additive manner. Optogenetic activation of TrkA eliminates the confounding effect of p75NTR and other potential off-target effects of the ligand. This approach can be generalized for the mechanistic study of other receptor-mediated signaling pathways.
34.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
35.

LOV Domains in the Design of Photoresponsive Enzymes.

blue LOV domains Review
ACS Chem Biol, 15 Jun 2018 DOI: 10.1021/acschembio.8b00159 Link to full text
Abstract: In nature, a multitude of mechanisms have emerged for regulating biological processes and, specifically, protein activity. Light as a natural regulatory element is of outstanding interest for studying and modulating protein activity because it can be precisely applied with regard to a site of action, instant of time, or intensity. Naturally occuring photoresponsive proteins, predominantly those containing a light-oxygen-voltage (LOV) domain, have been characterized structurally and mechanistically and also conjugated to various proteins of interest. Immediate advantages of these new photoresponsive proteins such as genetic encoding, no requirement of chemical modification, and reversibility are paid by difficulties in predicting the envisaged activity or type and site of domain fusion. In this article, we summarize recent advances and give a survey on currently available design concepts for engineering photoswitchable proteins.
36.

Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.

blue LOVTRAP 3T3MEF
Nat Chem Biol, 23 Apr 2018 DOI: 10.1038/s41589-018-0044-1 Link to full text
Abstract: Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Förster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
37.

Generation of Optogenetically Modified Adenovirus Vector for Spatiotemporally Controllable Gene Therapy.

blue CRY2/CIB1 mouse in vivo PC-3 Endogenous gene expression
ACS Chem Biol, 12 Jan 2018 DOI: 10.1021/acschembio.7b01058 Link to full text
Abstract: Gene therapy is expected to be utilized for the treatment of various diseases. However, the spatiotemporal resolution of current gene therapy technology is not high enough. In this study, we generated a new technology for spatiotemporally controllable gene therapy. We introduced optogenetic and CRISPR/Cas9 techniques into a recombinant adenovirus (Ad) vector, which is widely used in clinical trials and exhibits high gene transfer efficiency, to generate an illumination-dependent spatiotemporally controllable gene regulation system (designated the Opt/Cas-Ad system). We generated an Opt/Cas-Ad system that could regulate a potential tumor suppressor gene, and we examined the effectiveness of this system in cancer treatment using a xenograft tumor model. With the Opt/Cas-Ad system, highly selective tumor treatment could be performed by illuminating the tumor. In addition, Opt/Cas-Ad system-mediated tumor treatment could be stopped simply by turning off the light. We believe that our Opt/Cas-Ad system can enhance both the safety and effectiveness of gene therapy.
38.

Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.

blue CRY2/CIB1 HEK293T MVD7 Signaling cascade control
Cell Chem Biol, 25 Oct 2017 DOI: 10.1016/j.chembiol.2017.09.011 Link to full text
Abstract: Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
39.

A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription.

blue cyan CRY2/CIB1 pdDronpa1 HEK293T Nucleic acid editing
ACS Chem Biol, 22 Sep 2017 DOI: 10.1021/acschembio.7b00603 Link to full text
Abstract: Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.
40.

Engineering RGB color vision into Escherichia coli.

blue green red CcaS/CcaR Cph1 YtvA E. coli Multichromatic
Nat Chem Biol, 22 May 2017 DOI: 10.1038/nchembio.2390 Link to full text
Abstract: Optogenetic tools use colored light to rapidly control gene expression in space and time. We designed a genetically encoded system that gives Escherichia coli the ability to distinguish between red, green, and blue (RGB) light and respond by changing gene expression. We use this system to produce 'color photographs' on bacterial culture plates by controlling pigment production and to redirect metabolic flux by expressing CRISPRi guide RNAs.
41.

Illuminating developmental biology through photochemistry.

blue red Cryptochromes LOV domains Phytochromes Review
Nat Chem Biol, 17 May 2017 DOI: 10.1038/nchembio.2369 Link to full text
Abstract: Developmental biology has been continually shaped by technological advances, evolving from a descriptive science into one immersed in molecular and cellular mechanisms. Most recently, genome sequencing and 'omics' profiling have provided developmental biologists with a wealth of genetic and biochemical information; however, fully translating this knowledge into functional understanding will require new experimental capabilities. Photoactivatable probes have emerged as particularly valuable tools for investigating developmental mechanisms, as they can enable rapid, specific manipulations of DNA, RNA, proteins, and cells with spatiotemporal precision. In this Perspective, we describe optochemical and optogenetic systems that have been applied in multicellular organisms, insights gained through the use of these probes, and their current limitations. We also suggest how chemical biologists can expand the reach of photoactivatable technologies and bring new depth to our understanding of organismal development.
42.

Optogenetics: Switching with red and blue.

blue near-infrared red LOV domains Phytochromes Review
Nat Chem Biol, 17 May 2017 DOI: 10.1038/nchembio.2387 Link to full text
Abstract: Abstract not available.
43.

Engineering genetically-encoded tools for optogenetic control of protein activity.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Curr Opin Chem Biol, 17 May 2017 DOI: 10.1016/j.cbpa.2017.05.001 Link to full text
Abstract: Optogenetic tools offer fast and reversible control of protein activity with subcellular spatial precision. In the past few years, remarkable progress has been made in engineering photoactivatable systems regulating the activity of cellular proteins. In this review, we discuss general strategies in designing and optimizing such optogenetic tools and highlight recent advances in the field, with specific focus on applications regulating protein catalytic activity.
44.

Near-infrared optogenetic pair for protein regulation and spectral multiplexing.

blue near-infrared AsLOV2 BphP1/PpsR2 BphP1/Q-PAS1 VVD HeLa in vitro Multichromatic
Nat Chem Biol, 27 Mar 2017 DOI: 10.1038/nchembio.2343 Link to full text
Abstract: Multifunctional optogenetic systems are in high demand for use in basic and biomedical research. Near-infrared-light-inducible binding of bacterial phytochrome BphP1 to its natural PpsR2 partner is beneficial for simultaneous use with blue-light-activatable tools. However, applications of the BphP1-PpsR2 pair are limited by the large size, multidomain structure and oligomeric behavior of PpsR2. Here, we engineered a single-domain BphP1 binding partner, Q-PAS1, which is three-fold smaller and lacks oligomerization. We exploited a helix-PAS fold of Q-PAS1 to develop several near-infrared-light-controllable transcription regulation systems, enabling either 40-fold activation or inhibition. The light-induced BphP1-Q-PAS1 interaction allowed modification of the chromatin epigenetic state. Multiplexing the BphP1-Q-PAS1 pair with a blue-light-activatable LOV-domain-based system demonstrated their negligible spectral crosstalk. By integrating the Q-PAS1 and LOV domains in a single optogenetic tool, we achieved tridirectional protein targeting, independently controlled by near-infrared and blue light, thus demonstrating the superiority of Q-PAS1 for spectral multiplexing and engineering of multicomponent systems.
45.

Evolution of a split RNA polymerase as a versatile biosensor platform.

blue iLID E. coli
Nat Chem Biol, 13 Feb 2017 DOI: 10.1038/nchembio.2299 Link to full text
Abstract: Biosensors that transduce target chemical and biochemical inputs into genetic outputs are essential for bioengineering and synthetic biology. Current biosensor design strategies are often limited by a low signal-to-noise ratio, the extensive optimization required for each new input, and poor performance in mammalian cells. Here we report the development of a proximity-dependent split RNA polymerase (RNAP) as a general platform for biosensor engineering. After discovering that interactions between fused proteins modulate the assembly of a split T7 RNAP, we optimized the split RNAP components for protein-protein interaction detection by phage-assisted continuous evolution (PACE). We then applied the resulting activity-responsive RNAP (AR) system to create biosensors that can be activated by light and small molecules, demonstrating the 'plug-and-play' nature of the platform. Finally, we validated that ARs can interrogate multidimensional protein-protein interactions and trigger RNA nanostructure production, protein synthesis, and gene knockdown in mammalian systems, illustrating the versatility of ARs in synthetic biology applications.
46.

Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System.

blue miniSOG D. melanogaster in vivo HEK293T in vitro Cell death Developmental processes
Cell Chem Biol, 5 Jan 2017 DOI: 10.1016/j.chembiol.2016.12.010 Link to full text
Abstract: Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva. In addition, miniSOG2 is able to photoablate a small group of cells in one of the larval wing imaginal discs, resulting in an adult with one incomplete and one normal wing. We expect miniSOG2 to be a useful optogenetic tool for precision cell ablation at a desired developmental time point in live animals, thus opening a new window into cell origin, fate and function, tissue regeneration, and developmental biology.
47.

A Photoactivatable Innate Immune Receptor for Optogenetic Inflammation.

blue CRY2/CIB1 HEK293 RAW264.7 Signaling cascade control
ACS Chem Biol, 29 Dec 2016 DOI: 10.1021/acschembio.6b01012 Link to full text
Abstract: Although spatial and temporal elements of immune activation mediate the intensity of the immune response, few tools exist to directly examine these effects. To elucidate the spatiotemporal aspects of innate immune responses, we designed an optogenetic pattern recognition receptor that activates in response to blue light. We demonstrate direct receptor activation, leading to spatial and temporal control of downstream signaling pathways in a variety of relevant cell types. We combined our platform with Bi-molecular Fluorescence Complementation (BiFC), resulting in selective fluorescent labeling of cells in which receptor activation has occurred.
48.

A photoactivatable Cre-loxP recombination system for optogenetic genome engineering.

blue CRY2/CIB1 Magnets CHO-K1 Cos-7 HEK293 HeLa mouse in vivo NIH/3T3
Nat Chem Biol, 10 Oct 2016 DOI: 10.1038/nchembio.2205 Link to full text
Abstract: Genome engineering techniques represented by the Cre-loxP recombination system have been used extensively for biomedical research. However, powerful and useful techniques for genome engineering that have high spatiotemporal precision remain elusive. Here we develop a highly efficient photoactivatable Cre recombinase (PA-Cre) to optogenetically control genome engineering in vivo. PA-Cre is based on the reassembly of split Cre fragments by light-inducible dimerization of the Magnet system. PA-Cre enables sharp induction (up to 320-fold) of DNA recombination and is efficiently activated even by low-intensity illumination (∼0.04 W m(-2)) or short periods of pulsed illumination (∼30 s). We demonstrate that PA-Cre allows for efficient DNA recombination in an internal organ of living mice through noninvasive external illumination using a LED light source. The present PA-Cre provides a powerful tool to greatly facilitate optogenetic genome engineering in vivo.
49.

Go in! Go out! Inducible control of nuclear localization.

blue red UV LOV domains Phytochromes UV receptors Review
Curr Opin Chem Biol, 30 Jun 2016 DOI: 10.1016/j.cbpa.2016.06.009 Link to full text
Abstract: Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes taking place inside them. One mechanism consists in tightly controlling the localization of macromolecules, keeping them away from their place of action until needed. Since a large fraction of the cellular response to external stimuli is mediated by gene expression, it is not surprising that transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we review recent methods in chemical biology and optogenetics for controlling the nuclear localization of proteins of interest inside living cells. These methods allow researchers to regulate protein activity with exquisite spatiotemporal control, and open up new possibilities for studying the roles of proteins in a broad array of cellular processes and biological functions.
50.

Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).

blue AsLOV2 HEK293T
Curr Protoc Chem Biol, 2 Jun 2016 DOI: 10.1002/cpch.4 Link to full text
Abstract: Many biological processes are regulated by the timely import of specific proteins into the nucleus. The ability to spatiotemporally control the nuclear import of proteins of interest therefore allows study of their role in a given biological process as well as controlling this process in space and time. The light-inducible nuclear localization signal (LINuS) was developed based on a natural plant photoreceptor that reversibly triggers the import of proteins of interest into the nucleus with blue light. Each LINuS is a small, genetically encoded domain that is fused to the protein of interest at the N or C terminus. These protocols describe how to carry out initial microscopy-based screening to assess which LINuS variant works best with a protein of interest. © 2016 by John Wiley & Sons, Inc.
Submit a new publication to our database