Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 50 of 137 results
26.

Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase.

blue Magnets VVD HEK293T Transgene expression
ACS Synth Biol, 3 Aug 2022 DOI: 10.1021/acssynbio.2c00067 Link to full text
Abstract: Optogenetic tools are widely used to control gene expression dynamics both in prokaryotic and eukaryotic cells. These tools are used in a variety of biological applications from stem cell differentiation to metabolic engineering. Despite some tools already available in bacteria, no light-inducible system currently exists to control gene expression independently from mammalian transcriptional and/or translational machineries thus working orthogonally to endogenous regulatory mechanisms. Such a tool would be particularly important in synthetic biology, where orthogonality is advantageous to achieve robust activation of synthetic networks. Here we implement, characterize, and optimize a new optogenetic tool in mammalian cells based on a previously published system in bacteria called Opto-T7RNAPs. The tool is orthogonal to the cellular machinery for transcription and consists of a split T7 RNA polymerase coupled with the blue light-inducible magnets system (mammalian OptoT7-mOptoT7). In our study we exploited the T7 polymerase's viral origins to tune our system's expression level, reaching up to an almost 20-fold change activation over the dark control. mOptoT7 is used here to generate mRNA for protein expression, shRNA for protein inhibition, and Pepper aptamer for RNA visualization. Moreover, we show that mOptoT7 can mitigate the gene expression burden when compared to another optogenetic construct. These properties make mOptoT7 a powerful new tool to use when orthogonality and viral RNA species (that lack endogenous RNA modifications) are desired.
27.

Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering.

violet PhoCl in vitro Extracellular optogenetics
ACS Cent Sci, 1 Aug 2022 DOI: 10.1021/acscentsci.2c00576 Link to full text
Abstract: The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
28.

Light-Induced Patterning of Electroactive Bacterial Biofilms.

blue YtvA S. oneidensis
ACS Synth Biol, 22 Jun 2022 DOI: 10.1021/acssynbio.2c00024 Link to full text
Abstract: Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
29.

Light-Sensitive Lactococcus lactis for Microbe-Gut-Brain Axis Regulating via Upconversion Optogenetic Micro-Nano System.

blue YtvA L. lactis Transgene expression
ACS Nano, 1 Apr 2022 DOI: 10.1021/acsnano.1c11536 Link to full text
Abstract: The discovery of the gut-brain axis has proven that brain functions can be affected by the gut microbiota's metabolites, so there are significant opportunities to explore new tools to regulate gut microbiota and thus work on the brain functions. Meanwhile, engineered bacteria as oral live biotherapeutic agents to regulate the host's healthy homeostasis have attracted much attention in microbial therapy. However, whether this strategy is able to remotely regulate the host's brain function in vivo has not been investigated. Here, we engineered three blue-light-responsive probiotics as oral live biotherapeutic agents. They are spatiotemporally delivered and controlled by the upconversion optogenetic micro-nano system. This micro-nano system promotes the small intestine targeting and production of the exogenous L. lactis in the intestines, which realizes precise manipulation of brain functions including anxiety behavior, Parkinson's disease, and vagal afferent. The noninvasive and real-time probiotic intervention strategy makes the communiation from the gut to the host more controllable, which will enable the potential for engineered microbes accurately and effectively regulating a host's health.
30.

NIR-Responsive Photodynamic Nanosystem Combined with Antitumor Immune Optogenetics Bacteria for Precise Synergetic Therapy.

blue YtvA L. lactis Transgene expression
ACS Appl Mater Interfaces, 9 Mar 2022 DOI: 10.1021/acsami.2c01138 Link to full text
Abstract: Photodynamic therapy (PDT) and immunotherapy are considered promising methods for the treatment of tumors. However, these treatment systems are still suffering from shortcomings such as hypoxia, easy metastasis, and delayed immune response during PDT. Therefore, it is still challenging to establish a programmed and rapid response immune combination therapy platform. Here, we construct a two-step synergetic therapy platform for the treatment of primary tumors and distant tumors using upconversion nanoparticles (UCNPs) and engineered bacteria as therapeutic media. In the first step, erbium ion (Er3+)-doped UCNPs act as a photoswitcher to activate the photosensitizer ZnPc to produce 1O2 for primary tumor therapy. In the second step, thulium ion (Tm3+)-doped UCNPs can emit blue-violet light under the excitation of near-infrared (NIR) light to activate the engineered bacteria to produce interferon (INF-γ) and release them in the intestine, which can not only treat tumors directly but also act with PDT to regulate immune pathways to activate the immune system, resulting in a joint immunotherapy effect to inhibit the growth of distant tumors. As a new type of programmatic combination therapy, we have proved that this platform can jointly activate the body's immune system during PDT and immunization treatment and can effectively inhibit tumor metastasis.
31.

Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 18 Feb 2022 DOI: 10.1021/acssynbio.1c00387 Link to full text
Abstract: Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the first systematic study of in vivo maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.
32.

Far-Red Light Triggered Production of Bispecific T Cell Engagers (BiTEs) from Engineered Cells for Antitumor Application.

red BphS HEK293T Hep G2 SK-HEP-1 Transgene expression
ACS Synth Biol, 3 Feb 2022 DOI: 10.1021/acssynbio.1c00523 Link to full text
Abstract: Bispecific T-cell engagers (BiTEs), which have shown potent antitumor activity in humans, are emerging as one of the most promising immunotherapeutic strategies for cancer treatment in recent years. However, the clinical application of BiTEs nowadays has been hampered by their short half-life in the circulatory system due to their low molecular weight and rapid renal clearance. Inevitable continuous infusion of BiTEs has become a routine operation in order to achieve effective treatment, although it is costly, inconvenient, time-consuming, and even painful for patients in some cases. To develop an on-demand, tunable, and reversible approach to overcome these limitations, we assembled a transcription-control device into mammalian cells based on a bacterial far-red light (FRL) responsive signaling pathway to drive the expression of a BiTE against Glypican 3 (GPC3), which is a highly tumor-specific antigen expressed in most hepatocellular carcinomas (HCC). As demonstrated in in vitro experiments, we proved that the FRL sensitive device spatiotemporally responded to the control of FRL illumination and produced a therapeutic level of BiTEs that recruited and activated human T cells to eliminate GPC3 positive tumor cells. By functionally harnessing the power of optogenetics to remotely regulate the production of BiTEs from bioengineered cells and demonstrating its effectiveness in treating tumor cells, this study provides a novel approach to achieve an in vivo supply of BiTEs, which could be potentially applied to other formats of bispecific antibodies and facilitate their clinical applications.
33.

Design and Characterization of an Optogenetic System in Pichia pastoris.

blue EL222 P. pastoris Transgene expression
ACS Synth Biol, 7 Jan 2022 DOI: 10.1021/acssynbio.1c00422 Link to full text
Abstract: Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
34.

Designing Single-Component Optogenetic Membrane Recruitment Systems: The Rho-Family GTPase Signaling Toolbox.

blue BcLOV4 HEK293T Signaling cascade control
ACS Synth Biol, 3 Jan 2022 DOI: 10.1021/acssynbio.1c00604 Link to full text
Abstract: We describe the efficient creation of single-component optogenetic tools for membrane recruitment-based signaling perturbation using BcLOV4 technology. The workflow requires two plasmids to create six different domain arrangements of the dynamic membrane binder BcLOV4, a fluorescent reporter, and the fused signaling protein of interest. Screening of this limited set of genetic constructs for expression characteristics and dynamic translocation in response to one pulse of light is sufficient to identify viable signaling control tools. The reliability of this streamlined approach is demonstrated by the creation of an optogenetic Cdc42 GTPase and Rac1-activating Tiam1 GEF protein, which together with our other recently reported technologies, completes a toolbox for spatiotemporally precise induction of Rho-family GTPase signaling at the GEF or GTPase level, for driving filopodial protrusions, lamellipodial protrusions, and cell contractility, respectively mediated by Cdc42, Rac1, and RhoA.
35.

Analysis of Three Architectures for Controlling PTP1B with Light.

blue AsLOV2 LOVTRAP Cos-7 E. coli HEK293T Transgene expression
ACS Synth Biol, 13 Dec 2021 DOI: 10.1021/acssynbio.1c00398 Link to full text
Abstract: Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.
36.

An Optogenetic Toolbox for Synergistic Regulation of Protein Abundance.

blue iLID LOVTRAP in vitro S. cerevisiae Transgene expression
ACS Synth Biol, 19 Nov 2021 DOI: 10.1021/acssynbio.1c00350 Link to full text
Abstract: Optogenetic tools have been proven to be useful in regulating cellular processes via an external signal. Light can be applied with high spatial and temporal precision as well as easily modulated in quantity and quality. Natural photoreceptors of the light oxygen voltage (LOV) domain family have been characterized in depth, especially the LOV2 domain of Avena sativa (As) phototropin 1 and its derivatives. Information on the behavior of LOV2 variants with changes in the photocycle or the light response has been recorded. Here, we applied well-described photocycle mutations on the AsLOV2 domain of a photosensitive transcription factor (psTF) as well as its variant that is part of the photosensitive degron (psd) psd3 in Saccharomyces cerevisiae. In vivo and in vitro measurements revealed that each photoreceptor component of the light-sensitive transcription factor and the psd3 module can be modulated in its light sensitivity by mutations that are known to prolong or shorten the dark-reversion time of AsLOV2. Yet, only two of the mutations showed differences in the in vivo behavior in the context of the psd3 module. For the AsLOV2 domain in the context of the psTF, we observed different characteristics for all four variants. Molecular dynamics simulations showed distinct influences of the shortened Jα helix and the V416L mutation in the context of the psd3 photoreceptor. In conclusion, we demonstrated the tunability of two optogenetic tools with a set of mutations that affect the photocycle of the inherent photoreceptors. As these optogenetic tools are concurrent in their action, pleiotropic effects on target protein abundance are achievable with the simultaneous action of the diverse photoreceptor variants.
37.

Exploiting Noise, Non-Linearity, and Feedback for Differential Control of Multiple Synthetic Cells with a Single Optogenetic Input.

blue Magnets in silico
ACS Synth Biol, 18 Nov 2021 DOI: 10.1021/acssynbio.1c00341 Link to full text
Abstract: Synthetic biology seeks to develop modular biocircuits that combine to produce complex, controllable behaviors. These designs are often subject to noisy fluctuations and uncertainties, and most modern synthetic biology design processes have focused to create robust components to mitigate the noise of gene expression and reduce the heterogeneity of single-cell responses. However, a deeper understanding of noise can achieve control goals that would otherwise be impossible. We explore how an "Optogenetic Maxwell Demon" could selectively amplify noise to control multiple cells using single-input-multiple-output (SIMO) feedback. Using data-constrained stochastic model simulations and theory, we show how an appropriately selected stochastic SIMO controller can drive multiple different cells to different user-specified configurations irrespective of initial conditions. We explore how controllability depends on cells' regulatory structures, the amount of information available to the controller, and the accuracy of the model used. Our results suggest that gene regulation noise, when combined with optogenetic feedback and non-linear biochemical auto-regulation, can achieve synergy to enable precise control of complex stochastic processes.
38.

Optogenetic Control of Microbial Consortia Populations for Chemical Production.

blue YtvA E. coli S. cerevisiae Transgene expression
ACS Synth Biol, 5 Aug 2021 DOI: 10.1021/acssynbio.1c00182 Link to full text
Abstract: Microbial co-culture fermentations can improve chemical production from complex biosynthetic pathways over monocultures by distributing enzymes across multiple strains, thereby reducing metabolic burden, overcoming endogenous regulatory mechanisms, or exploiting natural traits of different microbial species. However, stabilizing and optimizing microbial subpopulations for maximal chemical production remains a major obstacle in the field. In this study, we demonstrate that optogenetics is an effective strategy to dynamically control populations in microbial co-cultures. Using a new optogenetic circuit we call OptoTA, we regulate an endogenous toxin-antitoxin system, enabling tunability of Escherichia coli growth using only blue light. With this system we can control the population composition of co-cultures of E. coli and Saccharomyces cerevisiae. When introducing in each strain different metabolic modules of biosynthetic pathways for isobutyl acetate or naringenin, we found that the productivity of co-cultures increases by adjusting the population ratios with specific light duty cycles. This study shows the feasibility of using optogenetics to control microbial consortia populations and the advantages of using light to control their chemical production.
39.

The Neurospora crassa Inducible Q System Enables Simultaneous Optogenetic Amplification and Inversion in Saccharomyces cerevisiae for Bidirectional Control of Gene Expression.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 4 Aug 2021 DOI: 10.1021/acssynbio.1c00229 Link to full text
Abstract: Bidirectional optogenetic control of yeast gene expression has great potential for biotechnological applications. Our group has developed optogenetic inverter circuits that activate transcription using darkness, as well as amplifier circuits that reach high expression levels under limited light. However, because both types of circuits harness Gal4p and Gal80p from the galactose (GAL) regulon they cannot be used simultaneously. Here, we apply the Q System, a transcriptional activator/inhibitor system from Neurospora crassa, to build circuits in Saccharomyces cerevisiae that are inducible using quinic acid, darkness, or blue light. We develop light-repressed OptoQ-INVRT circuits that initiate darkness-triggered transcription within an hour of induction, as well as light-activated OptoQ-AMP circuits that achieve up to 39-fold induction. The Q System does not exhibit crosstalk with the GAL regulon, allowing coutilization of OptoQ-AMP circuits with previously developed OptoINVRT circuits. As a demonstration of practical applications in metabolic engineering, we show how simultaneous use of these circuits can be used to dynamically control both growth and production to improve acetoin production, as well as enable light-tunable co-production of geraniol and linalool, two terpenoids implicated in the hoppy flavor of beer. OptoQ-AMP and OptoQ-INVRT circuits enable simultaneous optogenetic signal amplification and inversion, providing powerful additions to the yeast optogenetic toolkit.
40.

Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey.

blue iLID in vitro Extracellular optogenetics
ACS Nano, 21 Jun 2021 DOI: 10.1021/acsnano.1c01600 Link to full text
Abstract: Cells commonly communicate with each other through diffusible molecules but nonchemical communication remains elusive. While bioluminescent organisms communicate through light to find prey or attract mates, it is still under debate if signaling through light is possible at the cellular level. Here, we demonstrate that cell to cell signaling through light is possible in artificial cell communities derived from biomimetic vesicles. In our design, artificial sender cells produce an intracellular light signal, which triggers the adhesion to receiver cells. Unlike soluble molecules, the light signal propagates fast, independent of diffusion and without the need for a transporter across membranes. To obtain a predator-prey relationship, the luminescence predator cells is loaded with a secondary diffusible poison, which is transferred to the prey cell upon adhesion and leads to its lysis. This design provides a blueprint for light based intercellular communication, which can be used for programing artificial and natural cell communities.
41.

Engineering Gac/Rsm Signaling Cascade for Optogenetic Induction of the Pathogenicity Switch in Pseudomonas aeruginosa.

blue YtvA P. aeruginosa P. aeruginosa Signaling cascade control
ACS Synth Biol, 2 Jun 2021 DOI: 10.1021/acssynbio.1c00075 Link to full text
Abstract: Bacterial pathogens operate by tightly controlling the pathogenicity to facilitate invasion and survival in host. While small molecule inducers can be designed to modulate pathogenicity to perform studies of pathogen-host interaction, these approaches, due to the diffusion property of chemicals, may have unintended, or pleiotropic effects that can impose limitations on their use. By contrast, light provides superior spatial and temporal resolution. Here, using optogenetics we reengineered GacS of the opportunistic pathogen Pseudomonas aeruginosa, signal transduction protein of the global regulatory Gac/Rsm cascade which is of central importance for the regulation of infection factors. The resultant protein (termed YGS24) displayed significant light-dependent activity of GacS kinases in Pseudomonas aeruginosa. When introduced in the Caenorhabditis elegans host systems, YGS24 stimulated the pathogenicity of the Pseudomonas aeruginosa strain PAO1 in a brain-heart infusion and of another strain, PA14, in slow killing media progressively upon blue-light exposure. This optogenetic system provides an accessible way to spatiotemporally control bacterial pathogenicity in defined hosts, even specific tissues, to develop new pathogenesis systems, which may in turn expedite development of innovative therapeutics.
42.

Optimized iLID Membrane Anchors for Local Optogenetic Protein Recruitment.

blue iLID HEK293T
ACS Synth Biol, 12 Apr 2021 DOI: 10.1021/acssynbio.0c00511 Link to full text
Abstract: Optogenetic protein dimerization systems are powerful tools to investigate the biochemical networks that cells use to make decisions and coordinate their activities. These tools, including the improved Light-Inducible Dimer (iLID) system, offer the ability to selectively recruit components to subcellular locations, such as micron-scale regions of the plasma membrane. In this way, the role of individual proteins within signaling networks can be examined with high spatiotemporal resolution. Currently, consistent recruitment is limited by heterogeneous optogenetic component expression, and spatial precision is diminished by protein diffusion, especially over long time scales. Here, we address these challenges within the iLID system with alternative membrane anchoring domains and fusion configurations. Using live cell imaging and mathematical modeling, we demonstrate that the anchoring strategy affects both component expression and diffusion, which in turn impact recruitment strength, kinetics, and spatial dynamics. Compared to the commonly used C-terminal iLID fusion, fusion proteins with large N-terminal anchors show stronger local recruitment, slower diffusion of recruited components, efficient recruitment over wider gene expression ranges, and improved spatial control over signaling outputs. We also define guidelines for component expression regimes for optimal recruitment for both cell-wide and subcellular recruitment strategies. Our findings highlight key sources of imprecision within light-inducible dimer systems and provide tools that allow greater control of subcellular protein localization across diverse cell biological applications.
43.

Optogenetic Amplification Circuits for Light-Induced Metabolic Control.

blue EL222 S. cerevisiae
ACS Synth Biol, 9 Apr 2021 DOI: 10.1021/acssynbio.0c00642 Link to full text
Abstract: Dynamic control of microbial metabolism is an effective strategy to improve chemical production in fermentations. While dynamic control is most often implemented using chemical inducers, optogenetics offers an attractive alternative due to the high tunability and reversibility afforded by light. However, a major concern of applying optogenetics in metabolic engineering is the risk of insufficient light penetration at high cell densities, especially in large bioreactors. Here, we present a new series of optogenetic circuits we call OptoAMP, which amplify the transcriptional response to blue light by as much as 23-fold compared to the basal circuit (OptoEXP). These circuits show as much as a 41-fold induction between dark and light conditions, efficient activation at light duty cycles as low as ∼1%, and strong homogeneous light-induction in bioreactors of at least 5 L, with limited illumination at cell densities above 40 OD600. We demonstrate the ability of OptoAMP circuits to control engineered metabolic pathways in novel three-phase fermentations using different light schedules to control enzyme expression and improve production of lactic acid, isobutanol, and naringenin. These circuits expand the applicability of optogenetics to metabolic engineering.
44.

Optotheranostic Nanosystem with Phone Visual Diagnosis and Optogenetic Microbial Therapy for Ulcerative Colitis At-Home Care.

blue YtvA E. coli Transgene expression
ACS Nano, 5 Apr 2021 DOI: 10.1021/acsnano.1c00135 Link to full text
Abstract: Ulcerative colitis (UC) is a relapsing disorder characterized by chronic inflammation of the intestinal tract. However, the home care of UC based on remote monitoring, due to the operational complexity and time-consuming procedure, restrain its widespread applications. Here we constructed an optotheranostic nanosystem for self-diagnosis and long-acting mitigations of UC at home. The system included two major modules: (i) A disease prescreening module mediated by smartphone optical sensing. (ii) Disease real-time intervention module mediated by an optogenetic engineered bacteria system. Recombinant Escherichia coli Nissle 1917 (EcN) secreted interleukin-10 (IL-10) could downregulate inflammatory cascades and matrix metalloproteinases; it is a candidate for use in the therapeutic intervention of UC. The results showed that the Detector was able to analyze, report, and share the detection results in less than 1 min, and the limit of detection was 15 ng·mL-1. Besides, the IL-10-secreting EcN treatment suppressed the intestinal inflammatory response in UC mice and protected the intestinal mucosa against injury. The optotheranostic nanosystems enabled solutions to diagnose and treat disease at home, which promotes a mobile health service development.
45.

Structural Determinants for Light-Dependent Membrane Binding of a Photoswitchable Polybasic Domain.

blue AsLOV2 in vitro
ACS Synth Biol, 9 Mar 2021 DOI: 10.1021/acssynbio.0c00571 Link to full text
Abstract: OptoPB is an optogenetic tool engineered by fusion of the phosphoinositide (PI)-binding polybasic domain of Rit1 (Rit-PB) to a photoreactive light-oxygen-voltage (LOV) domain. OptoPB selectively and reversibly binds the plasma membrane (PM) under blue light excitation, and in the dark, it releases back to the cytoplasm. However, the molecular mechanism of optical regulation and lipid recognition is still unclear. Here using nuclear magnetic resonance (NMR) spectroscopy, liposome pulldown assay, and surface plasmon resonance (SPR), we find that OptoPB binds to membrane mimetics containing di- or triphosphorylated phosphatidylinositols, particularly phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), an acidic phospholipid predominantly located in the eukaryotic PM. In the dark, steric hindrance prevented this protein-membrane interaction, while 470 nm blue light illumination activated it. NMR titration and site-directed mutagenesis revealed that both cationic and hydrophobic Rit-PB residues are essential to the membrane interaction, indicating that OptoPB binds the membrane via a specific PI(4,5)P2-dependent mechanism.
46.

Optogenetic Modification of Pseudomonas aeruginosa Enables Controllable Twitching Motility and Host Infection.

blue bPAC (BlaC) P. aeruginosa Immediate control of second messengers
ACS Synth Biol, 5 Mar 2021 DOI: 10.1021/acssynbio.0c00559 Link to full text
Abstract: Cyclic adenosine monophosphate (cAMP) is an important secondary messenger that controls carbon metabolism, type IVa pili biogenesis, and virulence in Pseudomonas aeruginosa. Precise manipulation of bacterial intracellular cAMP levels may enable tunable control of twitching motility or virulence, and optogenetic tools are attractive because they afford excellent spatiotemporal resolution and are easy to operate. Here, we developed an engineered P. aeruginosa strain (termed pactm) with light-dependent intracellular cAMP levels through introducing a photoactivated adenylate cyclase gene (bPAC) into bacteria. On blue light illumination, pactm displayed a 15-fold increase in the expression of the cAMP responsive promoter and an 8-fold increase in its twitching activity. The skin lesion area of nude mouse in a subcutaneous infection model after 2-day pactm inoculation was increased 14-fold by blue light, making pactm suitable for applications in controllable bacterial host infection. In addition, we achieved directional twitching motility of pactm colonies through localized light illumination, which will facilitate the studies of contact-dependent interactions between microbial species.
47.

CRISPR-dcas9 Optogenetic Nanosystem for the Blue Light-Mediated Treatment of Neovascular Lesions.

blue CRY2/CIB1 HeLa primary mouse retinal microvascular endothelial cells Nucleic acid editing
ACS Appl Bio Mater, 15 Feb 2021 DOI: 10.1021/acsabm.0c01465 Link to full text
Abstract: Vascular endothelial growth factor (VEGF) is the key regulator in neovascular lesions. The anti-VEGF injection is a major way to relieve retinal neovascularization and treat these diseases. However, current anti-VEGF therapeutics show significant drawbacks. The reason is the inability to effectively control its therapeutic effect. Therefore, how to controllably inhibit the VEGF target is a key point for preventing angiogenesis. Here, a CRISPR-dCas9 optogenetic nanosystem was designed for the precise regulation of pathologic neovascularization. This system is composed of a light-controlled regulatory component and transcription inhibition component. They work together to controllably and effectively inhibit the target gene's VEGF. The opto-CRISPR nanosystem achieved precise regulation according to individual differences, whereby the expression and interaction of gene was activated by light. The following representative model laser-induced choroid neovascularization and oxygen-induced retinopathy were taken as examples to verify the effect of this nanosystem. The results showed that the opto-CRISPR nanosystem was more efficacious in the light control group (NV area effectively reduced by 41.54%) than in the dark control group without light treatment. This strategy for the CRISPR-optogenetic gene nanosystem led to the development of approaches for treating severe eye diseases. Besides, any target gene of interest can be designed by merely replacing the guide RNA sequences in this system, which provided a method for light-controlled gene transcriptional repression.
48.

A CRISPR-Cas9-Based Near-Infrared Upconversion-Activated DNA Methylation Editing System.

blue CRY2/CIB1 HEK293T mouse in vivo TPC-1 Nucleic acid editing
ACS Appl Mater Interfaces, 1 Feb 2021 DOI: 10.1021/acsami.0c21223 Link to full text
Abstract: DNA methylation is a kind of a crucial epigenetic marker orchestrating gene expression, molecular function, and cellular phenotype. However, manipulating the methylation status of specific genes remains challenging. Here, a clustered regularly interspaced palindromic repeats-Cas9-based near-infrared upconversion-activated DNA methylation editing system (CNAMS) was designed for the optogenetic editing of DNA methylation. The fusion proteins of photosensitive CRY2PHR, the catalytic domain of DNMT3A or TET1, and the fusion proteins for CIBN and catalytically inactive Cas9 (dCas9) were engineered. The CNAMS could control DNA methylation editing in response to blue light, thus allowing methylation editing in a spatiotemporal manner. Furthermore, after combination with upconversion nanoparticles, the spectral sensitivity of DNA methylation editing was extended from the blue light to near-infrared (NIR) light, providing the possibility for remote DNA methylation editing. These results demonstrated a meaningful step forward toward realizing the specific editing of DNA methylation, suggesting the wide utility of our CNAMS for functional studies on epigenetic regulation and potential therapeutic strategies for related diseases.
49.

Dynamical Modeling of Optogenetic Circuits in Yeast for Metabolic Engineering Applications.

blue EL222 in silico
ACS Synth Biol, 25 Jan 2021 DOI: 10.1021/acssynbio.0c00372 Link to full text
Abstract: Dynamic control of engineered microbes using light via optogenetics has been demonstrated as an effective strategy for improving the yield of biofuels, chemicals, and other products. An advantage of using light to manipulate microbial metabolism is the relative simplicity of interfacing biological and computer systems, thereby enabling in silico control of the microbe. Using this strategy for control and optimization of product yield requires an understanding of how the microbe responds in real-time to the light inputs. Toward this end, we present mechanistic models of a set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.
50.

Optogenetics in Sinorhizobium meliloti Enables Spatial Control of Exopolysaccharide Production and Biofilm Structure.

blue EL222 S. meliloti Transgene expression Control of cell-cell / cell-material interactions
ACS Synth Biol, 19 Jan 2021 DOI: 10.1021/acssynbio.0c00498 Link to full text
Abstract: Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium Sinorhizobium meliloti. By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in S. meliloti. The successful implementation of optically controlled gene expression in S. meliloti enables systematic investigation of how genotype and microenvironmental factors together shape phenotype in situ.
Submit a new publication to our database