Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 50 of 139 results
26.

High-throughput feedback-enabled optogenetic stimulation and spectroscopy in microwell plates.

blue YtvA E. coli Transgene expression
Commun Biol, 24 Nov 2023 DOI: 10.1038/s42003-023-05532-4 Link to full text
Abstract: The ability to perform sophisticated, high-throughput optogenetic experiments has been greatly enhanced by recent open-source illumination devices that allow independent programming of light patterns in single wells of microwell plates. However, there is currently a lack of instrumentation to monitor such experiments in real time, necessitating repeated transfers of the samples to stand-alone analytical instruments, thus limiting the types of experiments that could be performed. Here we address this gap with the development of the optoPlateReader (oPR), an open-source, solid-state, compact device that allows automated optogenetic stimulation and spectroscopy in each well of a 96-well plate. The oPR integrates an optoPlate illumination module with a module called the optoReader, an array of 96 photodiodes and LEDs that allows 96 parallel light measurements. The oPR was optimized for stimulation with blue light and for measurements of optical density and fluorescence. After calibration of all device components, we used the oPR to measure growth and to induce and measure fluorescent protein expression in E. coli. We further demonstrated how the optical read/write capabilities of the oPR permit computer-in-the-loop feedback control, where the current state of the sample can be used to adjust the optical stimulation parameters of the sample according to pre-defined feedback algorithms. The oPR will thus help realize an untapped potential for optogenetic experiments by enabling automated reading, writing, and feedback in microwell plates through open-source hardware that is accessible, customizable, and inexpensive.
27.

Toward a modeling, optimization, and predictive control framework for fed-batch metabolic cybergenetics.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 9 Nov 2023 DOI: 10.1002/bit.28575 Link to full text
Abstract: Biotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition. One can use metabolic and genetic engineering methods for optimization at the intracellular level. Nevertheless, those are often of static nature, failing when applied to dynamic processes or if disturbances occur. Furthermore, many bioprocesses are optimized empirically and implemented with little-to-no feedback control to counteract disturbances. The concept of cybergenetics has opened new possibilities to optimize bioprocesses by enabling online modulation of the gene expression of metabolism-relevant proteins via external inputs (e.g., light intensity in optogenetics). Here, we fuse cybergenetics with model-based optimization and predictive control for optimizing dynamic bioprocesses. To do so, we propose to use dynamic constraint-based models that integrate the dynamics of metabolic reactions, resource allocation, and inducible gene expression. We formulate a model-based optimal control problem to find the optimal process inputs. Furthermore, we propose using model predictive control to address uncertainties via online feedback. We focus on fed-batch processes, where the substrate feeding rate is an additional optimization variable. As a simulation example, we show the optogenetic control of the ATPase enzyme complex for dynamic modulation of enforced ATP wasting to adjust product yield and productivity.
28.

Comprehensive Screening of a Light-Inducible Split Cre Recombinase with Domain Insertion Profiling.

blue Magnets E. coli Transgene expression
ACS Synth Biol, 3 Oct 2023 DOI: 10.1021/acssynbio.3c00328 Link to full text
Abstract: Splitting proteins with light- or chemically inducible dimers provides a mechanism for post-translational control of protein function. However, current methods for engineering stimulus-responsive split proteins often require significant protein engineering expertise and the laborious screening of individual constructs. To address this challenge, we use a pooled library approach that enables rapid generation and screening of nearly all possible split protein constructs in parallel, where results can be read out by using sequencing. We perform our method on Cre recombinase with optogenetic dimers as a proof of concept, resulting in comprehensive data on the split sites throughout the protein. To improve the accuracy in predicting split protein behavior, we develop a Bayesian computational approach to contextualize errors inherent to experimental procedures. Overall, our method provides a streamlined approach for achieving inducible post-translational control of a protein of interest.
29.

Highlighter: An optogenetic system for high-resolution gene expression control in plants.

green CcaS/CcaR E. coli Transgene expression
PLoS Biol, 21 Sep 2023 DOI: 10.1371/journal.pbio.3002303 Link to full text
Abstract: Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
30.

Diya – a universal light illumination platform for multiwell plate cultures.

blue green CcaS/CcaR CRY2/CIB1 EL222 Magnets VVD E. coli HEK293T HeLa S. cerevisiae Transgene expression
iScience, 9 Sep 2023 DOI: 10.1016/j.isci.2023.107862 Link to full text
Abstract: Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
31.

Engineering Bacteriophytochrome-coupled Photoactivated Adenylyl Cyclases for Enhanced Optogenetic cAMP Modulation.

red DmPAC E. coli Transgene expression Immediate control of second messengers
J Mol Biol, 31 Aug 2023 DOI: 10.1016/j.jmb.2023.168257 Link to full text
Abstract: Sensory photoreceptors abound in nature and enable organisms to adapt behavior, development, and physiology to environmental light. In optogenetics, photoreceptors allow spatiotemporally precise, reversible, and non-invasive control by light of cellular processes. Notwithstanding the development of numerous optogenetic circuits, an unmet demand exists for efficient systems sensitive to red light, given its superior penetration of biological tissue. Bacteriophytochrome photoreceptors sense the ratio of red and far-red light to regulate the activity of enzymatic effector modules. The recombination of bacteriophytochrome photosensor modules with cyclase effectors underlies photoactivated adenylyl cyclases (PAC) that catalyze the synthesis of the ubiquitous second messenger 3', 5'-cyclic adenosine monophosphate (cAMP). Via homologous exchanges of the photosensor unit, we devised novel PACs, with the variant DmPAC exhibiting 40-fold activation of cyclase activity under red light, thus surpassing previous red-light-responsive PACs. Modifications of the PHY tongue modulated the responses to red and far-red light. Exchanges of the cyclase effector offer an avenue to further enhancing PACs but require optimization of the linker to the photosensor. DmPAC and a derivative for 3', 5'-cyclic guanosine monophosphate allow the manipulation of cyclic-nucleotide-dependent processes in mammalian cells by red light. Taken together, we advance the optogenetic control of second-messenger signaling and provide insight into the signaling and design of bacteriophytochrome receptors.
32.

A biological camera that captures and stores images directly into DNA.

blue red PhyB/PIF3 VVD E. coli Nucleic acid editing Multichromatic
Nat Commun, 3 Jul 2023 DOI: 10.1038/s41467-023-38876-w Link to full text
Abstract: The increasing integration between biological and digital interfaces has led to heightened interest in utilizing biological materials to store digital data, with the most promising one involving the storage of data within defined sequences of DNA that are created by de novo DNA synthesis. However, there is a lack of methods that can obviate the need for de novo DNA synthesis, which tends to be costly and inefficient. Here, in this work, we detail a method of capturing 2-dimensional light patterns into DNA, by utilizing optogenetic circuits to record light exposure into DNA, encoding spatial locations with barcoding, and retrieving stored images via high-throughput next-generation sequencing. We demonstrate the encoding of multiple images into DNA, totaling 1152 bits, selective image retrieval, as well as robustness to drying, heat and UV. We also demonstrate successful multiplexing using multiple wavelengths of light, capturing 2 different images simultaneously using red and blue light. This work thus establishes a 'living digital camera', paving the way towards integrating biological systems with digital devices.
33.

Detecting Photoactivatable Cre-mediated Gene Deletion Efficiency in Escherichia coli.

blue Magnets E. coli Transgene expression
Bio Protoc, 5 Jun 2023 DOI: 10.21769/bioprotoc.4685 Link to full text
Abstract: Gene deletion is one of the standard approaches in genetics to investigate the roles and functions of target genes. However, the influence of gene deletion on cellular phenotypes is usually analyzed sometime after the gene deletion was introduced. Such lags from gene deletion to phenotype evaluation could select only the fittest fraction of gene-deleted cells and hinder the detection of potentially diverse phenotypic consequences. Therefore, dynamic aspects of gene deletion, such as real-time propagation and compensation of deletion effects on cellular phenotypes, still need to be explored. To resolve this issue, we have recently introduced a new method that combines a photoactivatable Cre recombination system and microfluidic single-cell observation. This method enables us to induce gene deletion at desired timings in single bacterial cells and to monitor their dynamics for prolonged periods. Here, we detail the protocol for estimating the fractions of gene-deleted cells based on a batch-culture assay. The duration of blue light exposure significantly affects the fractions of gene-deleted cells. Therefore, gene-deleted and non-deleted cells can coexist in a cellular population by adjusting the duration of blue light exposure. Single-cell observations under such illumination conditions allow the comparison of temporal dynamics between gene-deleted and non-deleted cells and unravel phenotypic dynamics provoked by gene deletion.
34.

OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range.

green CcaS/CcaR E. coli Control of cytoskeleton / cell motility / cell shape Transgene expression
ACS Synth Biol, 22 May 2023 DOI: 10.1021/acssynbio.3c00035 Link to full text
Abstract: The ability to modulate gene expression is crucial for studying gene function and programming cell behaviors. Combining the reliability of CRISPRi and the precision of optogenetics, the optoCRISPRi technique is emerging as an advanced tool for live-cell gene regulation. Since previous versions of optoCRISPRi often exhibit no more than a 10-fold dynamic range due to the leakage activity, they are not suitable for targets that are sensitive to such leakage or critical for cell growth. Here, we describe a green-light-activated CRISPRi system with a high dynamic range (40 fold) and the flexibility of changing targets in Escherichia coli. Our optoCRISPRi-HD system can efficiently repress essential genes, nonessential genes, or inhibit the initiation of DNA replication. Providing a regulative system with high resolution over space-time and extensive targets, our study would facilitate further research involving complex gene networks, metabolic flux redirection, or bioprinting.
35.

Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.

blue AsLOV2 iLID E. coli HEK293T mouse in vivo rat cortical neurons S. cerevisiae Transgene expression
Nat Methods, 15 May 2023 DOI: 10.1038/s41592-023-01880-5 Link to full text
Abstract: The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
36.

Light-Regulated Pro-Angiogenic Engineered Living Materials.

blue YtvA E. coli Transgene expression
Adv Funct Mater, 5 May 2023 DOI: 10.1002/adfm.202212695 Link to full text
Abstract: Regenerative medicine aims to restore damaged cells, tissues, and organs, for which growth factors are vital to stimulate regenerative cellular transformations. Major advances have been made in growth factor engineering and delivery like the development of robust peptidomimetics and controlled release matrices. However, their clinical applicability remains limited due to their poor stability in the body and need for careful regulation of their local concentration to avoid unwanted side-effects. In this study, a strategy to overcome these limitations is explored using engineered living materials (ELMs), which contain live microorganisms that can be programmed with stimuli-responsive functionalities. Specifically, the development of an ELM that releases a pro-angiogenic protein in a light-regulated manner is described. This is achieved by optogenetically engineering bacteria to synthesize and secrete a vascular endothelial growth factor peptidomimetic (QK) linked to a collagen-binding domain. The bacteria are securely encapsulated in bilayer hydrogel constructs that support bacterial functionality but prevent their escape from the ELM. In situ control over the release profiles of the pro-angiogenic protein using light is demonstrated. Finally, it is shown that the released protein is able to bind collagen and promote angiogenic network formation among vascular endothelial cells, indicating the regenerative potential of these ELMs.
37.

An Adenosylcobalamin Specific Whole-Cell Biosensor.

green TtCBD E. coli Control of cell-cell / cell-material interactions
Adv Healthc Mater, 1 May 2023 DOI: 10.1002/adhm.202300835 Link to full text
Abstract: Vitamin B12 (cobalamin) is essential for human health and its deficiency results in anemia and neurological damage. Vitamin B12 exists in different forms with various bioactivity but most sensors are unable to discriminate between them. Here, a whole-cell agglutination assay that is specific for adenosylcobalamin (AboB12), which is one of two bioactive forms, is reported. This biosensor consists of Escherichia coli that express the AdoB12 specific binding domain of CarH at their surface. In the presence of AdoB12, CarH forms tetramers, which leads to specific bacterial cell-cell adhesions and agglutination. These CarH tetramers disassemble upon green light illumination such that reversion of the bacterial aggregation can serve as internal quality control. The agglutination assay has a detection limit of 500 nм AdoB12, works in protein-poor biofluids such as urine, and has high specificity to AdoB12 over other forms of vitamin B12 as also demonstrated with commercially available supplements. This work is a proof of concept for a cheap and easy-to-readout AdoB12 sensor that can be implemented at the point-of-care to monitor high-dose vitamin B12 supplementation.
38.

Light inducible protein degradation in E. coli with LOVtag.

blue AsLOV2 EL222 E. coli
bioRxiv, 26 Feb 2023 DOI: 10.1101/2023.02.25.530042 Link to full text
Abstract: Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVtag, a protein tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVtag by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVtag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVtag system. Finally, we use the LOVtag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVtag system, and introduce a powerful new tool for bacterial optogenetics.
39.

An optogenetic toolkit for light-inducible antibiotic resistance.

blue VVD E. coli Transgene expression Nucleic acid editing
Nat Commun, 23 Feb 2023 DOI: 10.1038/s41467-023-36670-2 Link to full text
Abstract: Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.
40.

A red light-controlled probiotic bio-system for in-situ gut-brain axis regulation.

red Cph1 E. coli Transgene expression Cell death
Biomaterials, 20 Jan 2023 DOI: 10.1016/j.biomaterials.2023.122005 Link to full text
Abstract: Microbes regulate brain function through the gut-brain axis, deriving the technology to modulate the gut-brain axis in situ by engineered probiotics. Optogenetics offers precise and flexible strategies for controlling the functions of probiotics in situ. However, the poor penetration of most frequently used short wavelength light has limited the application of optogenetic probiotics in the gut. Herein, a red-light optogenetic gut probiotic was applied for drug production and delivery and regulation of the host behaviors. Firstly, a Red-light Optogenetic E. coli Nissle 1917 strain (ROEN) that could respond to red light and release drug product by light-controlled lysis was constructed. The remaining optical power of red light after 3 cm tissue was still able to initiate gene expression of ROEN and produce about approximately 3-fold induction efficiency. To give full play to the in vivo potential of ROEN, its responsive ability of the penetrated red light was tested, and its encapsulation was realized by PH-sensitive alginate microcapsules for further oral administration. The function of ROEN for gut-brain regulation was realized by releasing Exendin-4 fused with anti-neonatal Fc receptor affibody. Neuroprotection and behavioral regulation effects were evaluated in the Parkinson's disease mouse model, after orally administration of ROEN delivering Exendin-4 under optogenetic control in the murine gut. The red-light optogenetic probiotic might be a perspective platform for in situ drug delivery and gut-brain axis regulation.
41.

Enhancing the performance of Magnets photosensors through directed evolution.

blue Magnets E. coli HEK293T Transgene expression
bioRxiv, 15 Nov 2022 DOI: 10.1101/2022.11.14.516313 Link to full text
Abstract: Photosensory protein domains are the basis of optogenetic protein engineering. These domains originate from natural sources where they fulfill specific functions ranging from the protection against photooxidative damage to circadian rhythms. When used in synthetic biology, the features of these photosensory domains can be specifically tailored towards the application of interest, enabling their full exploitation for optogenetic regulation in basic research and applied bioengineering. In this work, we develop and apply a simple, yet powerful, directed evolution and high-throughput screening strategy that allows us to alter the most fundamental property of the widely used nMag/pMag photodimerization system: its light sensitivity. We identify a set of mutations located within the photosensory domains, which either increase or decrease the light sensitivity at sub-saturating light intensities, while also improving the dark-to-light fold change in certain variants. For some of these variants, photosensitivity and expression levels could be changed independently, showing that the shape of the light-activity dose-response curve can be tuned and adjusted. We functionally characterize the variants in vivo in bacteria on the single-cell and the population levels. We further show that a subset of these variants can be transferred into the mOptoT7 for gene expression regulation in mammalian cells. We demonstrate increased gene expression levels for low light intensities, resulting in reduced potential phototoxicity in long-term experiments. Our findings expand the applicability of the widely used Magnets photosensors by enabling a tuning towards the needs of specific optogenetic regulation strategies. More generally, our approach will aid optogenetic approaches by making the adaptation of photosensor properties possible to better suit specific experimental or bioprocess needs.
42.

Near-Infrared Nano-Optogenetic Activation of Cancer Immunotherapy via Engineered Bacteria.

blue EL222 E. coli Signaling cascade control Transgene expression
Adv Mater, 31 Oct 2022 DOI: 10.1002/adma.202207198 Link to full text
Abstract: Certain anaerobic microbes with the capability to colonize in tumor microenvironment tend to express the heterologous gene in a sustainable manner, which would inevitably comprise the therapeutic efficacy and induce off-tumor toxicity in vivo. To improve the therapeutic precision and controllability of bacteria-based therapeutics, Escherichia coli Nissle 1917 (EcN) engineered to sense blue light and release the encoded flagellin B (flaB), is conjugated with lanthanide upconversion nanoparticles (UCNPs) for near-infrared (NIR) nano-optogenetic cancer immunotherapy. Upon 808 nm photoirradiation, UCNPs emit at the blue region to photoactivate the EcN for secretion of flaB, which subsequently binds to Toll-like receptor 5 expressed on the membrane of macrophages for activating immune response via MyD88-dependent signal pathway. Such synergism leads to significant tumor regression in different tumor models and metastatic tumors with negligible side effects. Our studies based on NIR nano-optogenetic platform highlight the rational of leveraging the optogenetic tools combined natural propensity of certain bacteria for cancer immunotherapy. This article is protected by copyright. All rights reserved.
43.

Upconversion Optogenetic Engineered Bacteria System for Time-Resolved Imaging Diagnosis and Light-Controlled Cancer Therapy.

blue YtvA E. coli Transgene expression Cell death
ACS Appl Mater Interfaces, 6 Oct 2022 DOI: 10.1021/acsami.2c14633 Link to full text
Abstract: Engineering bacteria can achieve targeted and controllable cancer therapy using synthetic biology technology and the characteristics of tumor microenvironment. Besides, the accurate tumor diagnosis and visualization of the treatment process are also vital for bacterial therapy. In this paper, a light control engineered bacteria system based on upconversion nanoparticles (UCNP)-mediated time-resolved imaging (TRI) was constructed for colorectal cancer theranostic and therapy. UCNP with different luminous lifetimes were separately modified with the tumor targeting molecule (folic acid) or anaerobic bacteria (Nissle 1917, EcN) to realize the co-localization of tumor tissues, thus improving the diagnostic accuracy based on TRI. In addition, blue light was used to induce engineered bacteria (EcN-pDawn-φx174E/TRAIL) lysis and the release of tumor apoptosis-related inducing ligand (TRAIL), thus triggering tumor cell death. In vitro and in vivo results indicated that this system could achieve accurate tumor diagnosis and light-controlled cancer therapy. EcN-pDawn-φx174E/TRAIL with blue light irradiation could inhibit 53% of tumor growth in comparison to that without blue light irradiation (11.8%). We expect that this engineered bacteria system provides a new technology for intelligent bacterial therapy and the construction of cancer theranostics.
44.

Blue Light Signaling Regulates Escherichia coli W1688 Biofilm Formation and l-Threonine Production.

blue Magnets E. coli Control of cell-cell / cell-material interactions
Microbiol Spectr, 27 Sep 2022 DOI: 10.1128/spectrum.02460-22 Link to full text
Abstract: Escherichia coli biofilm may form naturally on biotic and abiotic surfaces; this represents a promising approach for efficient biochemical production in industrial fermentation. Recently, industrial exploitation of the advantages of optogenetics, such as simple operation, high spatiotemporal control, and programmability, for regulation of biofilm formation has garnered considerable attention. In this study, we used the blue light signaling-induced optogenetic system Magnet in an E. coli biofilm-based immobilized fermentation system to produce l-threonine in sufficient quantity. Blue light signaling significantly affected the phenotype of E. coli W1688. A series of biofilm-related experiments confirmed the inhibitory effect of blue light signaling on E. coli W1688 biofilm. Subsequently, a strain lacking a blue light-sensing protein (YcgF) was constructed via genetic engineering, which substantially reduced the inhibitory effect of blue light signaling on biofilm. A high-efficiency biofilm-forming system, Magnet, was constructed, which enhanced bacterial aggregation and biofilm formation. Furthermore, l-threonine production was increased from 10.12 to 16.57 g/L during immobilized fermentation, and the fermentation period was shortened by 6 h. IMPORTANCE We confirmed the mechanism underlying the inhibitory effects of blue light signaling on E. coli biofilm formation and constructed a strain lacking a blue light-sensing protein; this mitigated the aforementioned effects of blue light signaling and ensured normal fermentation performance. Furthermore, this study elucidated that the blue light signaling-induced optogenetic system Magnet effectively regulates E. coli biofilm formation and contributes to l-threonine production. This study not only enriches the mechanism of blue light signaling to regulate E. coli biofilm formation but also provides a theoretical basis and feasibility reference for the application of optogenetics technology in biofilm-based immobilized fermentation systems.
45.

Light-Dependent Control of Bacterial Expression at the mRNA Level.

blue PAL YtvA E. coli Transgene expression
ACS Synth Biol, 21 Sep 2022 DOI: 10.1021/acssynbio.2c00365 Link to full text
Abstract: Sensory photoreceptors mediate numerous light-dependent adaptations across organisms. In optogenetics, photoreceptors achieve the reversible, non-invasive, and spatiotemporally precise control by light of gene expression and other cellular processes. The light-oxygen-voltage receptor PAL binds to small RNA aptamers with sequence specificity upon blue-light illumination. By embedding the responsive aptamer in the ribosome-binding sequence of genes of interest, their expression can be downregulated by light. We developed the pCrepusculo and pAurora optogenetic systems that are based on PAL and allow to down- and upregulate, respectively, bacterial gene expression using blue light. Both systems are realized as compact, single plasmids that exhibit stringent blue-light responses with low basal activity and up to several 10-fold dynamic range. As PAL exerts light-dependent control at the RNA level, it can be combined with other optogenetic circuits that control transcription initiation. By integrating regulatory mechanisms operating at the DNA and mRNA levels, optogenetic circuits with emergent properties can thus be devised. As a case in point, the pEnumbra setup permits to upregulate gene expression under moderate blue light whereas strong blue light shuts off expression again. Beyond providing novel signal-responsive expression systems for diverse applications in biotechnology and synthetic biology, our work also illustrates how the light-dependent PAL-aptamer interaction can be harnessed for the control and interrogation of RNA-based processes.
46.

Optogenetic Control of Bacterial Expression by Red Light.

blue red DrBphP PAL E. coli Transgene expression
ACS Synth Biol, 23 Aug 2022 DOI: 10.1021/acssynbio.2c00259 Link to full text
Abstract: In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.
47.

Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback.

blue Magnets E. coli Transgene expression
Nat Commun, 16 Aug 2022 DOI: 10.1038/s41467-022-32392-z Link to full text
Abstract: Communities of microbes play important roles in natural environments and hold great potential for deploying division-of-labor strategies in synthetic biology and bioproduction. However, the difficulty of controlling the composition of microbial consortia over time hinders their optimal use in many applications. Here, we present a fully automated, high-throughput platform that combines real-time measurements and computer-controlled optogenetic modulation of bacterial growth to implement precise and robust compositional control of a two-strain E. coli community. In addition, we develop a general framework for dynamic modeling of synthetic genetic circuits in the physiological context of E. coli and use a host-aware model to determine the optimal control parameters of our closed-loop compositional control system. Our platform succeeds in stabilizing the strain ratio of multiple parallel co-cultures at arbitrary levels and in changing these targets over time, opening the door for the implementation of dynamic compositional programs in synthetic bacterial communities.
48.

Dimerization of iLID Optogenetic Proteins Observed Using 3D Single-Molecule Tracking in Live Bacterial Cells.

blue iLID E. coli
bioRxiv, 10 Jul 2022 DOI: 10.1101/2022.07.10.499479 Link to full text
Abstract: 3D single molecule tracking microscopy has enabled measurements of protein diffusion in living cells, offering information about protein dynamics and the cellular environment. For example, different diffusive states can be resolved and assigned to protein complexes of different size and composition. However, substantial statistical power and biological validation, often through genetic deletion of binding partners, are required to support diffusive state assignments. When investigating some cellular processes, transient perturbation to protein spatial distributions is preferable to permanent genetic deletion of an essential protein. Optogenetic dimerization systems can be used to manipulate protein spatial distributions which could offer a means to deplete specific diffusive states observed in single molecule tracking experiments. Here, we evaluate the performance of the iLID optogenetic system in living E. coli cells using diffraction-limited microscopy and 3D single molecule tracking. We observed a robust optogenetic response in protein spatial distribution after 488 nm laser activation. Surprisingly, 3D single molecule tracking results indicate activation of the optogenetic response at high intensity wavelengths for which there is evidence of minimal photon absorbance by the LOV2 domain. However, the preactivation response was minimized through the use of iLID system mutants, and titration of protein expression levels.
49.

Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment.

blue BcLOV4 E. coli
Cell Rep Methods, 6 Jul 2022 DOI: 10.1016/j.crmeth.2022.100245 Link to full text
Abstract: We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.
50.

Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs.

blue EL222 E. coli Transgene expression Cell death
Biomaterials, 5 Jun 2022 DOI: 10.1016/j.biomaterials.2022.121619 Link to full text
Abstract: Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.
Submit a new publication to our database