Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 46 of 46 results
26.

LITESEC-T3SS - Light-controlled protein delivery into eukaryotic cells with high spatial and temporal resolution.

blue iLID LOVTRAP HEp-2 Y. enterocolitica Cell death
Nat Commun, 13 May 2020 DOI: 10.1038/s41467-020-16169-w Link to full text
Abstract: Many bacteria employ a type III secretion system (T3SS) injectisome to translocate proteins into eukaryotic host cells. Although the T3SS can efficiently export heterologous cargo proteins, a lack of target cell specificity currently limits its application in biotechnology and healthcare. In this study, we exploit the dynamic nature of the T3SS to govern its activity. Using optogenetic interaction switches to control the availability of the dynamic cytosolic T3SS component SctQ, T3SS-dependent effector secretion can be regulated by light. The resulting system, LITESEC-T3SS (Light-induced translocation of effectors through sequestration of endogenous components of the T3SS), allows rapid, specific, and reversible activation or deactivation of the T3SS upon illumination. We demonstrate the light-regulated translocation of heterologous reporter proteins, and induction of apoptosis in cultured eukaryotic cells. LITESEC-T3SS constitutes a new method to control protein secretion and translocation into eukaryotic host cells with unparalleled spatial and temporal resolution.
27.

A combination of LightOn gene expression system and tumor microenvironment-responsive nanoparticle delivery system for targeted breast cancer therapy.

blue VVD 4T1 mouse in vivo Transgene expression Cell death
Acta Pharm Sin B, 27 Apr 2020 DOI: 10.1016/j.apsb.2020.04.010 Link to full text
Abstract: A light-switchable transgene system called LightOn gene expression system could regulate gene expression with a high on/off ratio under blue light, and have great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system (NDDS) to achieve tumor microenvironment-responsive and targeted delivery of diphtheria toxin A (DTA) fragment-encoded plasmids to tumor sites. The expression of DTA was induced by exposure to blue light. Nanoparticles composed of polyethylenimine and vitamin E succinate linked by a disulfide bond, and PEGylated hyaluronic acid modified with RGD peptide, accumulated in tumor tissues and were actively internalized into 4T1 cells via dual targeting to CD44 and αvβ3 receptors. The LightOn gene expression system was able to control target protein expression through regulation of the intensity or duration of blue light exposure. In vitro studies showed that light-induced DTA expression reduced 4T1 cell viability and induced apoptosis. Furthermore, the LightOn gene expression system enabled spatiotemporal control of the expression of DTA in a mouse 4T1 tumor xenograft model, which resulted in excellent antitumor effects, reduced tumor angiogenesis, and no systemic toxicity. The combination of the LightOn gene expression system and NDDS may be an effective strategy for treatment of breast cancer.
28.

Tunable light and drug induced depletion of target proteins.

blue CRY2/CIB1 iLID BHK-21 C. elegans in vivo HeLa Cell death
Nat Commun, 16 Jan 2020 DOI: 10.1038/s41467-019-14160-8 Link to full text
Abstract: Biological processes in development and disease are controlled by the abundance, localization and modification of cellular proteins. We have developed versatile tools based on recombinant E3 ubiquitin ligases that are controlled by light or drug induced heterodimerization for nanobody or DARPin targeted depletion of endogenous proteins in cells and organisms. We use this rapid, tunable and reversible protein depletion for functional studies of essential proteins like PCNA in DNA repair and to investigate the role of CED-3 in apoptosis during Caenorhabditis elegans development. These independent tools can be combined for spatial and temporal depletion of different sets of proteins, can help to distinguish immediate cellular responses from long-term adaptation effects and can facilitate the exploration of complex networks.
29.

Imaging of Morphological and Biochemical Hallmarks of Apoptosis with Optimized Optogenetic Actuators.

blue CRY2/CIB1 HEK293T HeLa Neuro-2a Cell death
PLoS ONE, 3 Oct 2019 DOI: 10.1074/jbc.ra119.009141 Link to full text
Abstract: The creation of optogenetic switches for specific activation of cell-death pathways can provide insights into apoptosis and could also form a basis for non-invasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/CIB, a blue light–activated protein–protein dimerization module from the plant Arabidopsis thaliana together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane (OMM)-targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer-membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2–BAX system (henceforth referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for the membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters for imaging key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we have created a next-generation Cry2/CIB–BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.
30.

Engineering Strategy and Vector Library for the Rapid Generation of Modular Light-Controlled Protein-Protein Interactions.

blue CrLOV1 CRY2/CRY2 VfAU1-LOV VVD HEK293 Cell death
J Mol Biol, 29 May 2019 DOI: 10.1016/j.jmb.2019.05.033 Link to full text
Abstract: Optogenetics enables the spatio-temporally precise control of cell and animal behavior. Many optogenetic tools are driven by light-controlled protein-protein interactions (PPIs) that are repurposed from natural light-sensitive domains (LSDs). Applying light-controlled PPIs to new target proteins is challenging because it is difficult to predict which of the many available LSDs, if any, will yield robust light regulation. As a consequence, fusion protein libraries need to be prepared and tested, but methods and platforms to facilitate this process are currently not available. Here, we developed a genetic engineering strategy and vector library for the rapid generation of light-controlled PPIs. The strategy permits fusing a target protein to multiple LSDs efficiently and in two orientations. The public and expandable library contains 29 vectors with blue, green or red light-responsive LSDs, many of which have been previously applied ex vivo and in vivo. We demonstrate the versatility of the approach and the necessity for sampling LSDs by generating light-activated caspase-9 (casp9) enzymes. Collectively, this work provides a new resource for optical regulation of a broad range of target proteins in cell and developmental biology.
31.

Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.

blue AsLOV2 EL222 CHO-K1 Cos-7 HEK293 HEK293T HeLa isolated MEFs NIH/3T3 Cell death
Sci Rep, 9 Oct 2018 DOI: 10.1038/s41598-018-32929-7 Link to full text
Abstract: Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch (‘Blue-OFF’), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.
32.

Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans.

blue miniSOG C. elegans in vivo Cell death
Elife, 11 Sep 2018 DOI: 10.7554/elife.34997 Link to full text
Abstract: Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.
33.

A light-controlled cell lysis system in bacteria.

blue YtvA E. coli Transgene expression Cell death
J Ind Microbiol Biotechnol, 8 May 2018 DOI: 10.1007/s10295-018-2034-4 Link to full text
Abstract: Intracellular products (e.g., insulin), which are obtained through cell lysis, take up a big share of the biotech industry. It is often time-consuming, laborious, and environment-unfriendly to disrupt bacterial cells with traditional methods. In this study, we developed a molecular device for controlling cell lysis with light. We showed that intracellular expression of a single lysin protein was sufficient for efficient bacterial cell lysis. By placing the lysin-encoding gene under the control of an improved light-controlled system, we successfully controlled cell lysis by switching on/off light: OD600 of the Escherichia coli cell culture was decreased by twofold when the light-controlled system was activated under dark condition. We anticipate that our work would not only pave the way for cell lysis through a convenient biological way in fermentation industry, but also provide a paradigm for applying the light-controlled system in other fields of biotech industry.
34.

Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions.

blue miniSOG C. elegans in vivo Cell death
Proc Natl Acad Sci USA, 23 Apr 2018 DOI: 10.1073/pnas.1717022115 Link to full text
Abstract: Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.
35.

Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.

blue CRY2/CIB1 HeLa mouse in vivo Cell death
ACS Nano, 30 Oct 2017 DOI: 10.1021/acsnano.7b06395 Link to full text
Abstract: In vivo the application of optogenetic manipulation in deep tissue is seriously obstructed by the limited penetration depth of visible light that is continually applied to activate a photoactuator. Herein, we designed a versatile upconversion optogenetic nanosystem based on a blue-light-mediated heterodimerization module and rare-earth upconversion nanoparticles (UCNs). The UCNs worked as a nanotransducer to convert external deep-tissue-penetrating near-infrared (NIR) light to local blue light to noninvasively activate photoreceptors for optogenetic manipulation in vivo. In this, we demonstrated that deeply penetrating NIR light could be used to control the apoptotic signaling pathway of cancer cells in both mammalian cells and mice by UCNs. We believe that this interesting NIR-light-responsive upconversion optogenetic nanotechnology has significant application potentials for both basic research and clinical applications in vivo.
36.

Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.

blue AsLOV2 D. melanogaster in vivo in vitro Cell death Developmental processes
Proc Natl Acad Sci USA, 11 Sep 2017 DOI: 10.1073/pnas.1705064114 Link to full text
Abstract: The circuitry of the brain is characterized by cell heterogeneity, sprawling cellular anatomy, and astonishingly complex patterns of connectivity. Determining how complex neural circuits control behavior is a major challenge that is often approached using surgical, chemical, or transgenic approaches to ablate neurons. However, all these approaches suffer from a lack of precise spatial and temporal control. This drawback would be overcome if cellular ablation could be controlled with light. Cells are naturally and cleanly ablated through apoptosis due to the terminal activation of caspases. Here, we describe the engineering of a light-activated human caspase-3 (Caspase-LOV) by exploiting its natural spring-loaded activation mechanism through rational insertion of the light-sensitive LOV2 domain that expands upon illumination. We apply the light-activated caspase (Caspase-LOV) to study neurodegeneration in larval and adult Drosophila Using the tissue-specific expression system (UAS)-GAL4, we express Caspase-LOV specifically in three neuronal cell types: retinal, sensory, and motor neurons. Illumination of whole flies or specific tissues containing Caspase-LOV-induced cell death and allowed us to follow the time course and sequence of neurodegenerative events. For example, we find that global synchronous activation of caspase-3 drives degeneration with a different time-course and extent in sensory versus motor neurons. We believe the Caspase-LOV tool we engineered will have many other uses for neurobiologists and others for specific temporal and spatial ablation of cells in complex organisms.
37.

Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System.

blue miniSOG D. melanogaster in vivo HEK293T in vitro Cell death Developmental processes
Cell Chem Biol, 5 Jan 2017 DOI: 10.1016/j.chembiol.2016.12.010 Link to full text
Abstract: Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva. In addition, miniSOG2 is able to photoablate a small group of cells in one of the larval wing imaginal discs, resulting in an adult with one incomplete and one normal wing. We expect miniSOG2 to be a useful optogenetic tool for precision cell ablation at a desired developmental time point in live animals, thus opening a new window into cell origin, fate and function, tissue regeneration, and developmental biology.
38.

Lysosome-associated miniSOG as a photosensitizer for mammalian cells.

blue miniSOG HeLa Cell death
BioTechniques, 1 Aug 2016 DOI: 10.2144/000114445 Link to full text
Abstract: Genetically encoded photosensitizers represent a promising optogenetic tool for the induction of light-controlled oxidative stress strictly localized to a selected intracellular compartment. Here we tested the phototoxic effects of the flavin-containing phototoxic protein miniSOG targeted to the cytoplasmic surfaces of late endosomes and lysosomes by fusion with Rab7. In HeLa Kyoto cells stably expressing miniSOG-Rab7, we demonstrated a high level of cell death upon blue-light illumination. Pepstatin A completely abolished phototoxicity of miniSOG-Rab7, showing a key role for cathepsin D in this model. Using a far-red fluorescence sensor for caspase-3, we observed caspase-3 activation during miniSOG-Rab7-mediated cell death. We conclude that upon illumination, miniSOG-Rab7 induces lysosomal membrane permeabilization (LMP) and leakage of cathepsins into the cytosol, resulting in caspase-dependent apoptosis.
39.

An extraordinary stringent and sensitive light-switchable gene expression system for bacterial cells.

blue VVD YtvA E. coli Control of cytoskeleton / cell motility / cell shape Transgene expression Cell death
Cell Res, 17 Jun 2016 DOI: 10.1038/cr.2016.74 Link to full text
Abstract: Light-switchable gene expression systems provide transient, non-invasive and reversible means to control biological processes with high tunability and spatiotemporal resolution. In bacterial cells, a few light-regulated gene expression systems based on photoreceptors and two-component regulatory systems (TCSs) have been reported, which respond to blue, green or red light.
40.

Highly efficient optogenetic cell ablation in C. elegans using membrane-targeted miniSOG.

blue miniSOG C. elegans in vivo Cell death Developmental processes
Sci Rep, 10 Feb 2016 DOI: 10.1038/srep21271 Link to full text
Abstract: The genetically encoded photosensitizer miniSOG (mini Singlet Oxygen Generator) can be used to kill cells in C. elegans. miniSOG generates the reactive oxygen species (ROS) singlet oxygen after illumination with blue light. Illumination of neurons expressing miniSOG targeted to the outer mitochondrial membrane (mito-miniSOG) causes neuronal death. To enhance miniSOG's efficiency as an ablation tool in multiple cell types we tested alternative targeting signals. We find that membrane targeted miniSOG allows highly efficient cell killing. When combined with a point mutation that increases miniSOG's ROS generation, membrane targeted miniSOG can ablate neurons in less than one tenth the time of mito-miniSOG. We extend the miniSOG ablation technique to non-neuronal tissues, revealing an essential role for the epidermis in locomotion. These improvements expand the utility and throughput of optogenetic cell ablation in C. elegans.
41.

An Engineered Split Intein for Photoactivated Protein Trans-Splicing.

blue AsLOV2 E. coli HeLa Control of cytoskeleton / cell motility / cell shape Cell death
PLoS ONE, 28 Aug 2015 DOI: 10.1371/journal.pone.0135965 Link to full text
Abstract: Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC), by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.
42.

Optogenetic apoptosis: light-triggered cell death.

blue CRY2/CIB1 Cos-7 HeLa MTLn3 Cell death
Angew Chem Int Ed Engl, 25 Aug 2015 DOI: 10.1002/anie.201506346 Link to full text
Abstract: An optogenetic Bax has been designed that facilitates light-induced apoptosis. We demonstrate that mitochondrial recruitment of a genetically encoded light-responsive Bax results in the release of mitochondrial proteins, downstream caspase-3 cleavage, changes in cellular morphology, and ultimately cell death. Mutagenesis of a key phosphorylatable residue or modification of the C-terminus mitigates background (dark) levels of apoptosis that result from Bax overexpression. The mechanism of optogenetic Bax-mediated apoptosis was explored using a series of small molecules known to interfere with various steps in programmed cell death. Optogenetic Bax appears to form a mitochondrial apoptosis-induced channel analogous to that of endogenous Bax.
43.

A green-light inducible lytic system for cyanobacterial cells.

green CcaS/CcaR Cyanobacteria Transgene expression Cell death
Biotechnol Biofuels, 9 Apr 2014 DOI: 10.1186/1754-6834-7-56 Link to full text
Abstract: Cyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and cyanobacteria-based biofuel production. In this study, we aim to construct a lytic cyanobacterium that can be regulated by a physical signal (green-light illumination) for future use in the recovery of biofuel related compounds.
44.

Genetically engineered photoinducible homodimerization system with improved dimer-forming efficiency.

blue VVD Cos-7 HEK293 Cell death
ACS Chem Biol, 17 Jan 2014 DOI: 10.1021/cb400836k Link to full text
Abstract: Vivid (VVD) is a photoreceptor derived from Neurospora Crassa that rapidly forms a homodimer in response to blue light. Although VVD has several advantages over other photoreceptors as photoinducible homodimerization system, VVD has a critical limitation in its low dimer-forming efficiency. To overcome this limitation of wild-type VVD, here we conduct site-directed saturation mutagenesis in the homodimer interface of VVD. We have found that the Ile52Cys mutation of VVD (VVD-52C) substantially improves its homodimer-forming efficiency up to 180%. We have demonstrated the utility of VVD-52C for making a light-inducible gene expression system more robust. In addition, using VVD-52C, we have developed photoactivatable caspase-9, which enables optical control of apoptosis of mammalian cells. The present genetically engineered photoinducible homodimerization system can provide a powerful tool to optically control a broad range of molecular processes in the cell.
45.

Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG.

blue miniSOG C. elegans in vivo Cell death Developmental processes
Proc Natl Acad Sci USA, 24 Apr 2012 DOI: 10.1073/pnas.1204096109 Link to full text
Abstract: We describe a method for light-inducible and tissue-selective cell ablation using a genetically encoded photosensitizer, miniSOG (mini singlet oxygen generator). miniSOG is a newly engineered fluorescent protein of 106 amino acids that generates singlet oxygen in quantum yield upon blue-light illumination. We transgenically expressed mitochondrially targeted miniSOG (mito-miniSOG) in Caenorhabditis elegans neurons. Upon blue-light illumination, mito-miniSOG causes rapid and effective death of neurons in a cell-autonomous manner without detectable damages to surrounding tissues. Neuronal death induced by mito-miniSOG appears to be independent of the caspase CED-3, but the clearance of the damaged cells partially depends on the phagocytic receptor CED-1, a homolog of human CD91. We show that neurons can be killed at different developmental stages. We further use this method to investigate the role of the premotor interneurons in regulating the convulsive behavior caused by a gain-of-function mutation in the neuronal acetylcholine receptor acr-2. Our findings support an instructive role for the interneuron AVB in controlling motor neuron activity and reveal an inhibitory effect of the backward premotor interneurons on the forward interneurons. In summary, the simple inducible cell ablation method reported here allows temporal and spatial control and will prove to be a useful tool in studying the function of specific cells within complex cellular contexts.
46.

Engineering a photoactivated caspase-7 for rapid induction of apoptosis.

blue AsLOV2 CHO Cos-7 HEK293 HeLa NIH/3T3 Cell death
ACS Synth Biol, 4 Nov 2011 DOI: 10.1021/sb200008j Link to full text
Abstract: Apoptosis is a cell death program involved in the development of multicellular organisms, immunity, and pathologies ranging from cancer to HIV/AIDS. We present an engineered protein that causes rapid apoptosis of targeted cells in monolayer culture after stimulation with blue light. Cells transfected with the protein switch L57V, a tandem fusion of the light-sensing LOV2 domain and the apoptosis-executing domain from caspase-7, rapidly undergo apoptosis within 60 min after light stimulation. Constant illumination of under 5 min or oscillating with 1 min exposure had no effect, suggesting that cells have natural tolerance to a short duration of caspase-7 activity. Furthermore, the overexpression of Bcl-2 prevented L57V-mediated apoptosis, suggesting that although caspase-7 activation is sufficient to start apoptosis, it requires mitochondrial contribution to fully commit.
Submit a new publication to our database