Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 451 - 475 of 476 results
451.

Multichromatic control of gene expression in Escherichia coli.

green red CcaS/CcaR Cph1 E. coli Multichromatic
J Mol Biol, 28 Oct 2010 DOI: 10.1016/j.jmb.2010.10.038 Link to full text
Abstract: Light is a powerful tool for manipulating living cells because it can be applied with high resolution across space and over time. We previously constructed a red light-sensitive Escherichia coli transcription system based on a chimera between the red/far-red switchable cyanobacterial phytochrome Cph1 and the E. coli EnvZ/OmpR two-component signaling pathway. Here, we report the development of a green light-inducible transcription system in E. coli based on a recently discovered green/red photoswitchable two-component system from cyanobacteria. We demonstrate that the transcriptional output is proportional to the intensity of green light applied and that the green sensor is orthogonal to the red sensor at intensities of 532-nm light less than 0.01 W/m(2). Expression of both sensors in a single cell allows two-color optical control of transcription both in batch culture and in patterns across a lawn of engineered cells. Because each sensor functions as a photoreversible switch, this system should allow the spatial and temporal control of the expression of multiple genes through different combinations of light wavelengths. This feature aids precision single-cell and population-level studies in systems and synthetic biology.
452.

Using light to control signaling cascades in live neurons.

blue red LOV domains Phytochromes Review
Curr Opin Neurobiol, 17 Sep 2010 DOI: 10.1016/j.conb.2010.08.018 Link to full text
Abstract: Understanding the complexity of neuronal biology requires the manipulation of cellular processes with high specificity and spatio-temporal precision. The recent development of synthetic photo-activatable proteins designed using the light-oxygen-voltage and phytochrome domains provides a new set of tools for genetically targeted optical control of cell signaling. Their modular design, functional diversity, precisely controlled activity and in vivo applicability offer many advantages for investigating neuronal function. Although designing these proteins is still a considerable challenge, future advances in rational protein design and a deeper understanding of their photoactivation mechanisms will allow the development of the next generation of optogenetic techniques.
453.

Reversible photoswitching of protein function.

red Phytochromes Review
Mol Biosyst, 9 Aug 2010 DOI: 10.1039/c005058j Link to full text
Abstract: Using light to tune the activity of proteins represents a very attractive avenue for creating various temporal interferences in living systems. In this mini-review, we highlight a few recent developments in this broad and exciting field. Among the various methods, we have discussed in more detail the advantages and future challenges in using light switchable drugs to regulate the signaling proteins in the immune system.
454.

Recent advances in the photochemical control of protein function.

blue red LOV domains Phytochromes Review
Trends Biotechnol, 29 Jul 2010 DOI: 10.1016/j.tibtech.2010.06.001 Link to full text
Abstract: Biological processes are regulated with a high level of spatial and temporal resolution. To understand and manipulate these processes, scientists need to be able to regulate them with Nature's level of precision. In this context, light is a unique regulatory element because it can be precisely controlled in terms of location, timing and amplitude. Moreover, most biological laboratories have a wide range of light sources as standard equipment. This review article summarizes the most recent advances in light-mediated regulation of protein function and its application in a cellular context. Specifically, the photocaging of small-molecule modulators of protein function and of specific amino acid residues in proteins is discussed. In addition, examples of the photochemical control of protein function through the application of genetically engineered natural-light receptors are presented.
455.

An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology.

red Phytochromes Background
PLoS ONE, 19 May 2010 DOI: 10.1371/journal.pone.0010721 Link to full text
Abstract: Plants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes.
456.

Light-induced degradation of phyA is promoted by transfer of the photoreceptor into the nucleus.

red Phytochromes Background
Plant Mol Biol, 15 May 2010 DOI: 10.1007/s11103-010-9649-9 Link to full text
Abstract: Higher plants possess multiple members of the phytochrome family of red, far-red light sensors to modulate plant growth and development according to competition from neighbors. The phytochrome family is composed of the light-labile phyA and several light-stable members (phyB-phyE in Arabidopsis). phyA accumulates to high levels in etiolated seedlings and is essential for young seedling establishment under a dense canopy. In photosynthetically active seedlings high levels of phyA counteract the shade avoidance response. phyA levels are maintained low in light-grown plants by a combination of light-dependent repression of PHYA transcription and light-induced proteasome-mediated degradation of the activated photoreceptor. Light-activated phyA is transported from the cytoplasm where it resides in darkness to the nucleus where it is needed for most phytochrome-induced responses. Here we show that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and the nucleus. However, phyA degradation is significantly slower in the cytoplasm than in the nucleus. In the nucleus phyA is degraded in a proteasome-dependent mechanism even in its inactive Pr (red light absorbing) form, preventing the accumulation of high levels of nuclear phyA in darkness. Thus, light-induced degradation of phyA is in part controlled by a light-regulated import into the nucleus where the turnover is faster. Although most phyA responses require nuclear phyA it might be useful to maintain phyA in the cytoplasm in its inactive form to allow accumulation of high levels of the light sensor in etiolated seedlings.
457.

Structure and function of plant photoreceptors.

blue near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review Background
Annu Rev Plant Biol, 25 Jan 2010 DOI: 10.1146/annurev-arplant-042809-112259 Link to full text
Abstract: Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
458.

Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis.

red Phytochromes Background
Plant Cell, 30 Sep 2009 DOI: 10.1105/tpc.109.069765 Link to full text
Abstract: In Arabidopsis thaliana, the cryptochrome (CRY) blue light photoreceptors and the phytochrome (phy) red/far-red light photoreceptors mediate a variety of light responses. COP1, a RING motif-containing E3 ubiquitin ligase, acts as a key repressor of photomorphogenesis. Production of stomata, which mediate gas and water vapor exchange between plants and their environment, is regulated by light and involves phyB and COP1. Here, we show that, in the loss-of-function mutants of CRY and phyB, stomatal development is inhibited under blue and red light, respectively. In the loss-of-function mutant of phyA, stomata are barely developed under far-red light. Strikingly, in the loss-of-function mutant of either COP1 or YDA, a mitogen-activated protein kinase kinase kinase, mature stomata are developed constitutively and produced in clusters in both light and darkness. CRY, phyA, and phyB act additively to promote stomatal development. COP1 acts genetically downstream of CRY, phyA, and phyB and in parallel with the leucine-rich repeat receptor-like protein TOO MANY MOUTHS but upstream of YDA and the three basic helix-loop-helix proteins SPEECHLESS, MUTE, and FAMA, respectively. These findings suggest that light-controlled stomatal development is likely mediated through a crosstalk between the cryptochrome-phytochrome-COP1 signaling system and the mitogen-activated protein kinase signaling pathway.
459.

A switchable light-input, light-output system modelled and constructed in yeast.

red PhyA/FHL PhyA/FHY1 S. cerevisiae
J Biol Eng, 17 Sep 2009 DOI: 10.1186/1754-1611-3-15 Link to full text
Abstract: Advances in synthetic biology will require spatio-temporal regulation of biological processes in heterologous host cells. We develop a light-switchable, two-hybrid interaction in yeast, based upon the Arabidopsis proteins PHYTOCHROME A and FAR-RED ELONGATED HYPOCOTYL 1-LIKE. Light input to this regulatory module allows dynamic control of a light-emitting LUCIFERASE reporter gene, which we detect by real-time imaging of yeast colonies on solid media.
460.

Spatiotemporal control of cell signalling using a light-switchable protein interaction.

red PhyB/PIF6 NIH/3T3 Control of cytoskeleton / cell motility / cell shape
Nature, 13 Sep 2009 DOI: 10.1038/nature08446 Link to full text
Abstract: Genetically encodable optical reporters, such as green fluorescent protein, have revolutionized the observation and measurement of cellular states. However, the inverse challenge of using light to control precisely cellular behaviour has only recently begun to be addressed; semi-synthetic chromophore-tethered receptors and naturally occurring channel rhodopsins have been used to perturb directly neuronal networks. The difficulty of engineering light-sensitive proteins remains a significant impediment to the optical control of most cell-biological processes. Here we demonstrate the use of a new genetically encoded light-control system based on an optimized, reversible protein-protein interaction from the phytochrome signalling network of Arabidopsis thaliana. Because protein-protein interactions are one of the most general currencies of cellular information, this system can, in principle, be generically used to control diverse functions. Here we show that this system can be used to translocate target proteins precisely and reversibly to the membrane with micrometre spatial resolution and at the second timescale. We show that light-gated translocation of the upstream activators of Rho-family GTPases, which control the actin cytoskeleton, can be used to precisely reshape and direct the cell morphology of mammalian cells. The light-gated protein-protein interaction that has been optimized here should be useful for the design of diverse light-programmable reagents, potentially enabling a new generation of perturbative, quantitative experiments in cell biology.
461.

A synthetic genetic edge detection program.

red Cph1 E. coli
Cell, 26 Jun 2009 DOI: 10.1016/j.cell.2009.04.048 Link to full text
Abstract: Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.
462.

Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.

red Phytochromes Background
Genetics, 2 Mar 2009 DOI: 10.1534/genetics.108.099887 Link to full text
Abstract: Phytochrome interacting factors (PIFs) are nuclear basic helix-loop-helix (bHLH) transcription factors that negatively regulate photomorphogenesis both in the dark and in the light in Arabidopsis. The phytochrome (phy) family of photoreceptors induces the rapid phosphorylation and degradation of PIFs in response to both red and far-red light conditions to promote photomorphogenesis. Although phys have been shown to function under blue light conditions, the roles of PIFs under blue light have not been investigated in detail. Here we show that PIF1 negatively regulates photomorphogenesis at the seedling stage under blue light conditions. pif1 seedlings displayed more open cotyledons and slightly reduced hypocotyl length compared to wild type under diurnal (12 hr light/12 hr dark) blue light conditions. Double-mutant analyses demonstrated that pif1phyA, pif1phyB, pif1cry1, and pif1cry2 have enhanced cotyledon opening compared to the single photoreceptor mutants under diurnal blue light conditions. Blue light induced the rapid phosphorylation, polyubiquitination, and degradation of PIF1 through the ubi/26S proteasomal pathway. PIF1 interacted with phyA and phyB in a blue light-dependent manner, and the interactions with phys are necessary for the blue light-induced degradation of PIF1. phyA played a dominant role under pulses of blue light, while phyA, phyB, and phyD induced the degradation of PIF1 in an additive manner under prolonged continuous blue light conditions. Interestingly, the absence of cry1 and cry2 enhanced the degradation of PIF1 under blue light conditions. Taken together, these data suggest that PIF1 functions as a negative regulator of photomorphogenesis under blue light conditions and that blue light-activated phys induce the degradation of PIF1 through the ubi/26S proteasomal pathway to promote photomorphogenesis.
463.

A light-independent allele of phytochrome B faithfully recapitulates photomorphogenic transcriptional networks.

red Phytochromes Background
Mol Plant, 16 Dec 2008 DOI: 10.1093/mp/ssn086 Link to full text
Abstract: Dominant gain-of-function alleles of Arabidopsis phytochrome B were recently shown to confer light-independent, constitutive photomorphogenic (cop) phenotypes to transgenic plants (Su and Lagarias, 2007). In the present study, comparative transcription profiling experiments were performed to assess whether the pattern of gene expression regulated by these alleles accurately reflects the process of photomorphogenesis in wild-type Arabidopsis. Whole-genome transcription profiles of dark-grown phyAphyB seedlings expressing the Y276H mutant of phyB (YHB) revealed that YHB reprograms about 13% of the Arabidopsis transcriptome in a light-independent manner. The YHB-regulated transcriptome proved qualitatively similar to but quantitatively greater than those of wild-type seedlings grown under 15 or 50 micromol m(-2) m(-1) continuous red light (Rc). Among the 2977 genes statistically significant two-fold (SSTF) regulated by YHB in the absence of light include those encoding components of the photosynthetic apparatus, tetrapyrrole/pigment biosynthetic pathways, and early light-responsive signaling factors. Approximately 80% of genes SSTF regulated by Rc were also YHB-regulated. Expression of a notable subset of 346 YHB-regulated genes proved to be strongly attenuated by Rc, indicating compensating regulation by phyC-E and/or other Rc-dependent processes. Since the majority of these 346 genes are regulated by the circadian clock, these results suggest that phyA- and phyB-independent light signaling pathway(s) strongly influence clock output. Together with the unique plastid morphology of dark-grown YHB seedlings, these analyses indicate that the YHB mutant induces constitutive photomorphogenesis via faithful reconstruction of phyB signaling pathways in a light-independent fashion.
464.

Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness.

red Phytochromes Background
Curr Biol, 9 Dec 2008 DOI: 10.1016/j.cub.2008.10.058 Link to full text
Abstract: An important contributing factor to the success of terrestrial flowering plants in colonizing the land was the evolution of a developmental strategy, termed skotomorphogenesis, whereby postgerminative seedlings emerging from buried seed grow vigorously upward in the subterranean darkness toward the soil surface.
465.

Transposing phytochrome into the nucleus.

red Phytochromes Review Background
Trends Plant Sci, 27 Sep 2008 DOI: 10.1016/j.tplants.2008.08.007 Link to full text
Abstract: To control many physiological responses, phytochromes directly modulate gene expression. A key regulatory event in this signal transduction pathway is the light-controlled translocation of the photoreceptor from the cytoplasm into the nucleus. Recent publications are beginning to shed light on the molecular mechanisms underlying this central control point. Interestingly, there is a specific mechanism for phytochrome A (phyA) nuclear accumulation. The dedicated phyA nuclear import pathway might be important for the distinct photosensory specificity of this atypical phytochrome. Recent studies in the field also provide a starting point for investigating how the different subcellular pools of phytochrome can control distinct responses to light.
466.

Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway.

red PhyB/PIF3 in vitro
Proc Natl Acad Sci USA, 26 Aug 2008 DOI: 10.1073/pnas.0801232105 Link to full text
Abstract: General methods to engineer genetically encoded, reversible, light-mediated control over protein function would be useful in many areas of biomedical research and technology. We describe a system that yields such photo-control over actin assembly. We fused the Rho family GTPase Cdc42 in its GDP-bound form to the photosensory domain of phytochrome B (PhyB) and fused the Cdc42 effector, the Wiskott-Aldrich Syndrome Protein (WASP), to the light-dependent PhyB-binding domain of phytochrome interacting factor 3 (Pif3). Upon red light illumination, the fusion proteins bind each other, activating WASP, and consequently stimulating actin assembly by the WASP target, the Arp2/3 complex. Binding and WASP activation are reversed by far-red illumination. Our approach, in which the biochemical specificity of the nucleotide switch in Cdc42 is overridden by the light-dependent PhyB-Pif3 interaction, should be generally applicable to other GTPase-effector pairs.
467.

Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein.

green Phytochromes Background
Proc Natl Acad Sci USA, 9 Jul 2008 DOI: 10.1073/pnas.0801826105 Link to full text
Abstract: Cyanobacteriochromes are a newly recognized group of photoreceptors that are distinct relatives of phytochromes but are found only in cyanobacteria. A putative cyanobacteriochrome, CcaS, is known to chromatically regulate the expression of the phycobilisome linker gene (cpcG2) in Synechocystis sp. PCC 6803. In this study, we isolated the chromophore-binding domain of CcaS from Synechocystis as well as from phycocyanobilin-producing Escherichia coli. Both preparations showed the same reversible photoconversion between a green-absorbing form (Pg, lambda(max) = 535 nm) and a red-absorbing form (Pr, lambda(max) = 672 nm). Mass spectrometry and denaturation analyses suggested that Pg and Pr bind phycocyanobilin in a double-bond configuration of C15-Z and C15-E, respectively. Autophosphorylation activity of the histidine kinase domain in nearly full-length CcaS was up-regulated by preirradiation with green light. Similarly, phosphotransfer to the cognate response regulator, CcaR, was higher in Pr than in Pg. From these results, we conclude that CcaS phosphorylates CcaR under green light and induces expression of cpcG2, leading to accumulation of CpcG2-phycobilisome as a chromatic acclimation system. CcaS is the first recognized green light receptor in the expanded phytochrome superfamily, which includes phytochromes and cyanobacteriochromes.
468.

Photoregulation in prokaryotes.

blue near-infrared red Fluorescent proteins LOV domains Phytochromes Review Background
Curr Opin Microbiol, 8 Apr 2008 DOI: 10.1016/j.mib.2008.02.014 Link to full text
Abstract: The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.
469.

Activation of protein splicing with light in yeast.

red PhyB/PIF3 S. cerevisiae
Nat Methods, 13 Feb 2008 DOI: 10.1038/nmeth.1189 Link to full text
Abstract: Spatiotemporal regulation of protein function is a key feature of living systems; experimental tools that provide such control are of great utility. Here we report a genetically encoded system for controlling a post-translational process, protein splicing, with light. Studies in Saccharomyces cerevisiae demonstrate that fusion of a photodimerization system from Arabidopsis thaliana to an artificially split intein permits rapid activation of protein splicing to yield a new protein product.
470.

Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration.

near-infrared Phytochromes Background
Biochim Biophys Acta, 26 Sep 2007 DOI: 10.1016/j.bbabio.2007.09.003 Link to full text
Abstract: In the purple photosynthetic bacterium Rhodopseudomonas palustris, far-red illumination induces photosystem synthesis via the action of the bacteriophytochrome RpBphP1. This bacteriophytochrome antagonizes the repressive effect of the transcriptional regulator PpsR2 under aerobic condition. We show here that, in addition to photosystem synthesis, far-red light induces a significant growth rate limitation, compared to cells grown in the dark, linked to a decrease in the respiratory activity. The phenotypes of mutants inactivated in RpBphP1 and PpsR2 show their involvement in this regulation. Based on enzymatic and transcriptional studies, a 30% decrease in the expression of the alpha-ketoglutarate dehydrogenase complex, a central enzyme of the Krebs cycle, is observed under far-red light. We propose that this decrease is responsible for the down-regulation of respiration in this condition. This regulation mechanism at the Krebs cycle level still allows the formation of the photosynthetic apparatus via the synthesis of key biosynthesis precursors but lowers the production of NADH, i.e. the respiratory activity. Overall, the dual action of RpBphP1 on the regulation of both the photosynthesis genes and the Krebs cycle allows a fine adaptation of bacteria to environmental conditions by enhancement of the most favorable bioenergetic process in the light, photosynthesis versus respiration.
471.

An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP.

red Phytochromes Background
J Biol Chem, 12 Sep 2006 DOI: 10.1074/jbc.m604819200 Link to full text
Abstract: Bacteriophytochromes are bacterial photoreceptors that sense red/far red light using the biliverdin chromophore. Most bacteriophytochromes work as photoactivated protein kinases. The Rhodobacter sphaeroides bacteriophytochrome BphG1 is unconventional in that it has GGDEF and EAL output domains, which are involved, respectively, in synthesis (diguanylate cyclase) and degradation (phosphodiesterase) of the bacterial second messenger c-di-GMP. The GGDEF-EAL proteins studied to date displayed either diguanylate cyclase or phosphodiesterase activity but not both. To elucidate the function of BphG1, the holoprotein was purified from an Escherichia coli overexpression system designed to produce biliverdin. The holoprotein contained covalently bound biliverdin and interconverted between the red (dark) and far red (light-activated) forms. BphG1 had c-di-GMP-specific phosphodiesterase activity. Unexpectedly for a photochromic protein, this activity was essentially light-independent. BphG1 expressed in E. coli was found to undergo partial cleavage into two species. The smaller species was identified as the EAL domain of BphG1. It possessed c-di-GMP phosphodiesterase activity. Surprisingly, the larger species lacking EAL possessed diguanylate cyclase activity, which was dependent on biliverdin and strongly activated by light. BphG1 therefore is the first phytochrome with a non-kinase photoactivated enzymatic activity. This shows that the photosensory modules of phytochromes can transmit light signals to various outputs. BphG1 is potentially the first "bifunctional" enzyme capable of both c-di-GMP synthesis and hydrolysis. A model for the regulation of the "opposite" activities of BphG1 is presented.
472.

Synthetic biology: engineering Escherichia coli to see light.

red Cph1 E. coli
Nature, 24 Nov 2005 DOI: 10.1038/nature04405 Link to full text
Abstract: We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image. This spatial control of bacterial gene expression could be used to 'print' complex biological materials, for example, and to investigate signalling pathways through precise spatial and temporal control of their phosphorylation steps.
473.

BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms.

blue red BLUF domains Fluorescent proteins LOV domains Phytochromes Background
Trends Biochem Sci, 1 Oct 2002 DOI: 10.1016/s0968-0004(02)02181-3 Link to full text
Abstract: A novel FAD-binding domain, BLUF, exemplified by the N-terminus of the AppA protein from Rhodobacter sphaeroides, is present in various proteins, primarily from Bacteria. The BLUF domain is involved in sensing blue-light (and possibly redox) using FAD and is similar to the flavin-binding PAS domains and cryptochromes. The predicted secondary structure reveals that the BLUF domain is a novel FAD-binding fold.
474.

A light-switchable gene promoter system.

red PhyB/PIF3 S. cerevisiae
Nat Biotechnol, 3 Sep 2002 DOI: 10.1038/nbt734 Link to full text
Abstract: Regulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes. Most of these rely on the administration of either exogenous chemicals or heat shock. Despite the general success of many of these systems, the potential for problems, such as toxic, unintended, or pleiotropic effects of the inducing chemical or treatment, can impose limitations on their use. We have developed a promoter system that can be induced, rapidly and reversibly, by short pulses of light. This system is based on the known red light-induced binding of the plant photoreceptor phytochrome to the protein PIF3 and the reversal of this binding by far-red light. We show here that yeast cells expressing two chimeric proteins, a phytochrome-GAL4-DNA-binding-domain fusion and a PIF3-GAL4-activation-domain fusion, are induced by red light to express selectable or "scorable" marker genes containing promoters with a GAL4 DNA-binding site, and that this induction is rapidly abrogated by subsequent far-red light. We further show that the extent of induction can be controlled precisely by titration of the number of photons delivered to the cells by the light pulse. Thus, this system has the potential to provide rapid, noninvasive, switchable control of the expression of a desired gene to a preselected level in any suitable cell by simple exposure to a light signal.
475.

Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3.

red Phytochromes Background
Proc Natl Acad Sci USA, 21 Nov 2000 DOI: 10.1073/pnas.230433797 Link to full text
Abstract: The signaling pathways by which the phytochrome (phy) family of photoreceptors transmits sensory information to light-regulated genes remain to be fully defined. Evidence for a relatively direct pathway has been provided by the binding of one member of the family, phyB, to a promoter-element-bound, basic helix-loop-helix protein, PIF3, specifically upon light-induced conversion of the photoreceptor molecule to its biologically active conformer (Pfr). Here, we show that phyA also binds selectively and reversibly to PIF3 upon photoconversion to Pfr, but that the apparent affinity of PIF3 for phyA is 10-fold lower than for phyB. This result is consistent with previous in vivo data from PIF3-deficient Arabidopsis, indicating that PIF3 has a major role in phyB signaling, but a more minor role in phyA signaling. We also show that phyB binds stoichiometrically to PIF3 at an equimolar ratio, suggesting that the resultant complex is the unit active in transcriptional regulation at target promoters. Deletion mapping suggests that a 37-aa segment present at the N terminus of phyB, but absent from phyA, contributes strongly to the high binding affinity of phyB for PIF3. Conversely, deletion mapping and point mutation analysis of PIF3 for determinants involved in recognition of phyB indicates that the PAS domain of PIF3 is a major contributor to this interaction, but that a second determinant in the C-terminal domain is also necessary.
Submit a new publication to our database