Showing 351 - 375 of 549 results
351.
Advances in optogenetic regulation of gene expression in mammalian cells using cryptochrome 2 (CRY2).
Abstract:
Synthetic regulation of gene expression provides a powerful approach to reprogram molecular and cellular processes and test the function of specific genes and gene products. In the last decade, optogenetic systems that allow light-dependent gene regulation have become valuable tools, providing tight spatiotemporal control of protein levels. Here we discuss and build on recent optogenetic approaches for regulating gene expression in mammalian cells using cryptochrome 2 (CRY2), a photoreceptor protein from Arabidopsis. We provide detailed protocols for using light to manipulate activity of a CRY2-based engineered photoactivatable Cre DNA recombinase, and to induce or disrupt transcription factor function. In addition, we provide instructions and software for building an inexpensive Rasberry-Pi-based programable LED device for optogenetic experiments, delivering pulsed light with customized control of illumination duration, frequency, and intensity.
352.
Optically inducible membrane recruitment and signaling systems.
Abstract:
Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
353.
Optogenetic perturbation of the biochemical pathways that control cell behavior.
Abstract:
Optogenetic tools provide a level of spatial and temporal resolution needed to shed new light on dynamic intercellular processes. In this chapter we outline specific protocols for applying these tools to cell motility (optogenetic cofilin), apoptosis [optogenetic Bcl-like protein 4 (Bax)], and protein kinase-mediated signaling pathways [optogenetic cAMP-dependent protein kinase (PKA)]. The activity of these optogenetic species is regulated by the light-mediated dimerization of a cryptochrome/Cib protein pair, which controls the intracellular positioning of the protein of interest. The light induced recruitment of cofilin to the cytoskeleton is utilized for directed migration studies and filopodial dynamics. Light-triggered migration of Bax to the outer mitochondrial membrane induces cellular collapse and eventual apoptosis. Finally, the light-mediated movement of PKA to specific intracellular compartments offers the means to assess the consequences of PKA activity in a site-specific fashion via phosphoproteomic analysis.
354.
Design, construction, and validation of optogenetic proteins.
Abstract:
Cellular optogenetics employs light-regulated, genetically encoded protein actuators to perturb cellular signaling with unprecedented spatial and temporal control. Here, we present a potentially generalized approach for transforming a given protein of interest (POI) into an optogenetic species. We describe the rational and methods by which we developed three different optogenetic POIs utilizing the Cry2-Cib photodimerizing pair. The process pipeline is highlighted by (1) developing a low level, constitutively active POI that is independent of endogenous regulation, (2) fusion of the mutant protein of interest to an optogenetic photodimerizing system, and (3) light-mediated recruitment of the light-responsive POI to specific subcellular regions.
355.
Biological signal generators: integrating synthetic biology tools and in silico control.
Abstract:
Biological networks sense extracellular stimuli and generate appropriate outputs within the cell that determine cellular response. Biological signal generators are becoming an important tool for understanding how information is transmitted in these networks and controlling network behavior. Signal generators produce well-defined, dynamic, intracellular signals of important network components, such as kinase activity or the concentration of a specific transcription factor. Synthetic biology tools coupled with in silico control have enabled the construction of these sophisticated biological signal generators. Here we review recent advances in biological signal generator construction and their use in systems biology studies. Challenges for constructing signal generators for a wider range of biological networks and generalizing their use are discussed.
356.
Photodimerization systems for regulating protein-protein interactions with light.
Abstract:
Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
357.
Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration.
Abstract:
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
358.
Light-Induced Protein Clustering for Optogenetic Interference and Protein Interaction Analysis in Drosophila S2 Cells.
Abstract:
Drosophila Schneider 2 (S2) cells are a simple and powerful system commonly used in cell biology because they are well suited for high resolution microscopy and RNAi-mediated depletion. However, understanding dynamic processes, such as cell division, also requires methodology to interfere with protein function with high spatiotemporal control. In this research study, we report the adaptation of an optogenetic tool to Drosophila S2 cells. Light-activated reversible inhibition by assembled trap (LARIAT) relies on the rapid light-dependent heterodimerization between cryptochrome 2 (CRY2) and cryptochrome-interacting bHLH 1 (CIB1) to form large protein clusters. An anti-green fluorescent protein (GFP) nanobody fused with CRY2 allows this method to quickly trap any GFP-tagged protein in these light-induced protein clusters. We evaluated clustering kinetics in response to light for different LARIAT modules, and showed the ability of GFP-LARIAT to inactivate the mitotic protein Mps1 and to disrupt the membrane localization of the polarity regulator Lethal Giant Larvae (Lgl). Moreover, we validated light-induced co-clustering assays to assess protein-protein interactions in S2 cells. In conclusion, GFP-based LARIAT is a versatile tool to answer different biological questions, since it enables probing of dynamic processes and protein-protein interactions with high spatiotemporal resolution in Drosophila S2 cells.
359.
Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.
-
Pan, H
-
Wang, H
-
Yu, J
-
Huang, X
-
Hao, Y
-
Zhang, C
-
Ji, W
-
Yang, M
-
Gong, X
-
Wu, X
-
Chang, J
Abstract:
In vivo noninvasively manipulating biological functions by the mediation of biosafe near infrared (NIR) light is becoming increasingly popular. For these applications, upconversion rare-earth nanomaterial holds great promise as a novel photonic element, and has been widely adopted in optogenetics. In this article, an upconversion optogenetic nanosystem that was promised to achieve autophagy up-regulation with spatiotemporal precision was designed. The implantable, wireless, recyclable, less-invasive and biocompatible system worked via two separated parts: blue light-receptor optogenetics-autophagy upregulation plasmids, for protein import; upconversion rods-encapsulated flexible capsule (UCRs-capsule), for converting tissue-penetrative NIR light into local visible blue light. Results validated that this system could achieve up-regulation of autophagy in vitro (in both HeLa and 293T cell lines) and remotely penetrate tissue (∼3.5 mm) in vivo. Since autophagy serves at a central position in intracellular signalling pathways, which is correlative with diverse pathologies, we expect that this method could establish an upconversion material-based autophagy up-regulation strategy for fundamental and clinical applications.
360.
A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission.
-
Liu, Q
-
Sinnen, BL
-
Boxer, EE
-
Schneider, MW
-
Grybko, MJ
-
Buchta, WC
-
Gibson, ES
-
Wysoczynski, CL
-
Ford, CP
-
Gottschalk, A
-
Aoto, J
-
Tucker, CL
-
Kennedy, MJ
Abstract:
Regulated secretion is critical for diverse biological processes ranging from immune and endocrine signaling to synaptic transmission. Botulinum and tetanus neurotoxins, which specifically proteolyze vesicle fusion proteins involved in regulated secretion, have been widely used as experimental tools to block these processes. Genetic expression of these toxins in the nervous system has been a powerful approach for disrupting neurotransmitter release within defined circuitry, but their current utility in the brain and elsewhere remains limited by lack of spatial and temporal control. Here we engineered botulinum neurotoxin B so that it can be activated with blue light. We demonstrate the utility of this approach for inducibly disrupting excitatory neurotransmission, providing a first-in-class optogenetic tool for persistent, light-triggered synaptic inhibition. In addition to blocking neurotransmitter release, this approach will have broad utility for conditionally disrupting regulated secretion of diverse bioactive molecules, including neuropeptides, neuromodulators, hormones, and immune molecules. VIDEO ABSTRACT.
361.
Perspective Tools for Optogenetics and Photopharmacology: From Design to Implementation.
Abstract:
Optogenetics and photopharmacology are two perspective modern
methodologies for control and monitoring of biological processes from an isolated
cell to complex cell assemblies and organisms. Both methodologies use optically
active components that being introduced into the cells of interest allow for optical
control or monitoring of different cellular processes. In optogenetics, genetic
materials are introduced into the cells to express light-sensitive proteins or protein
constructs. In photopharmacology, photochromic compounds are delivered into a
cell directly but not produced inside the cell from a genetic material. The development
of both optogenetics and photopharmacology is inseparable from the design
of improved tools (protein constructs or organic molecules) optimized for specific
applications. Herein, we review the main tools that are used in modern optogenetics
and photopharmaclogy and describe the types of cellular processes that can be
controlled by these tools. Although a large number of different kinds of optogenetic
tools exist, their performance can be evaluated with a limited number of metrics that
have to be optimized for specific applications.We classify thesemetrics and describe
the ways of their improvement.
362.
Blue Light Switchable Cell–Cell Interactions Provide
Reversible and Spatiotemporal Control Towards
Bottom-Up Tissue Engineering.
Abstract:
Controlling cell–cell interactions is central for understanding key cellular
processes and bottom-up tissue assembly from single cells. The challenge is
to control cell–cell interactions dynamically and reversibly with high spati-
otemporal precision noninvasively and sustainably. In this study, cell–cell
interactions are controlled with visible light using an optogenetic approach by
expressing the blue light switchable proteins CRY2 or CIBN on the surfaces of
cells. CRY2 and CIBN expressing cells form specific heterophilic interactions
under blue light providing precise control in space and time. Further, these
interactions are reversible in the dark and can be repeatedly and dynamically
switched on and off. Unlike previous approaches, these genetically encoded
proteins allow for long-term expression of the interaction domains and
respond to nontoxic low intensity blue light. In addition, these interactions
are suitable to assemble cells into 3D multicellular architectures. Overall, this
approach captures the dynamic and reversible nature of cell–cell interactions
and controls them noninvasively and sustainably both in space and time. This
provides a new way of studying cell–cell interactions and assembling cellular
building blocks into tissues with unmatched flexibility.
363.
Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions.
-
Jung, H
-
Kim, SW
-
Kim, M
-
Hong, J
-
Yu, D
-
Kim, JH
-
Lee, Y
-
Kim, S
-
Woo, D
-
Shin, HS
-
Park, BO
-
Do Heo, W
Abstract:
Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying functions of genes within complex neural circuits. Here, we develop a highly light-sensitive and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manipulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep mouse brain regions by illumination with a noninvasive light-emitting diode. In addition, PA-Flp can be extended to the Cre-lox system through a viral vector as Flp-dependent Cre expression platform, thereby activating both Flp and Cre. Finally, we demonstrate that PA-Flp-dependent, Cre-mediated Cav3.1 silencing in the medial septum increases object-exploration behavior in mice. Thus, PA-Flp is a noninvasive, highly efficient, and easy-to-use optogenetic module that offers a side-effect-free and expandable genetic manipulation tool for neuroscience research.
364.
Using Synthetic Biology to Engineer Spatial Patterns.
Abstract:
Synthetic biology has emerged as a multidisciplinary field that provides new tools and approaches to address longstanding problems in biology. It integrates knowledge from biology, engineering, mathematics, and biophysics to build—rather than to simply observe and perturb—biological systems that emulate natural counterparts or display novel properties. The interface between synthetic and developmental biology has greatly benefitted both fields and allowed to address questions that would remain challenging with classical approaches due to the intrinsic complexity and essentiality of developmental processes. This Progress Report provides an overview of how synthetic biology can help to understand a process that is crucial for the development of multicellular organisms: pattern formation. It reviews the major mechanisms of genetically encoded synthetic systems that have been engineered to establish spatial patterns at the population level. Limitations, challenges, applications, and potential opportunities of synthetic pattern formation are also discussed.
365.
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.
Abstract:
Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
366.
Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex.
-
Han, S
-
Wei, S
-
Wang, X
-
Han, X
-
Zhang, M
-
Su, M
-
Li, Y
-
Guo, J
-
Zeng, W
-
Liu, J
-
Gao, Y
-
Shen, L
Abstract:
Human hepatic C3A cells have been applied in bioartificial liver development, although these cells display low intrinsic cytochrome P450 3A4 (CYP3A4) enzyme activity. We aimed to enhance CYP3A4 enzyme activity of C3A cells utilizing CRISPR gene editing technology. We designed two CYP3A4 expression enhanced systems applying clustered regularly interspaced short palindromic repeats (CRISPR) gene technology: a CRISPR-on activation system including dCas9-VP64-GFP and two U6-sgRNA-mCherry elements, and a light-controlled CRISPR-on activation system combining our CRISPR-on activation system with an optical control system to facilitate regulation of CYP3A4 expression for various applications. Results of enzymatic activity assays displayed increased CYP3A4 activity in C3A cells expressing the CRISPR-on activation system compared with C3A cells. In addition, CYP3A4 activity increased in C3A cells expressing the light-controlled CRISPR-on activation system under blue light radiation compared with C3A cells. Notably, there was no statistical difference in the increase of CYP3A4 protein amounts induced by these two methods. After expansion in culture, C3A cells with the light-controlled CRISPR-on activation system exhibited no statistical difference in CYP3A4 mRNA levels between generations. Our findings provide a method to stably enhance functional gene expression in bioartificial liver cells with the potential for large-scale cell expansion.
367.
Development of a Wireless-Controlled LED Array for the Tunable Optogenetic Control of Cellular Activities.
Abstract:
Abstract not available.
368.
Optogenetic control of morphogenesis goes 3D.
Abstract:
The generation of form in living embryos, a process termed “morphogenesis” from the Greek word lοqφοcέmerg, is one of the most fascinating unsolved problems in biology. In embryonic epithelia, most attention has been paid to events occurring at the apical surface of epithelia, particularly the regulation of actomyosin contractility during morphogenetic change. In a new report, De Renzis and colleagues demonstrate a key role for regulated actomyosin contractility at the basal surface of the epithelium during formation of the first epithelial fold in Drosophila (the “ventral furrow”) (Krueger et al, 2018).
369.
Optogenetic dissection of Rac1 and Cdc42 gradient shaping.
Abstract:
During cell migration, Rho GTPases spontaneously form spatial gradients that define the front and back of cells. At the front, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Here we report, using a combination of optogenetics and micropatterning, that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by transport mechanisms. Cdc42 simply follows the distribution of Guanine nucleotide Exchange Factors, whereas Rac1 shaping requires the activity of a GTPase-Activating Protein, β2-chimaerin, which is sharply localized at the tip of the cell through feedbacks from Cdc42 and Rac1. Functionally, the spatial extent of Rho GTPases gradients governs cell migration, a sharp Cdc42 gradient maximizes directionality while an extended Rac1 gradient controls the speed.
370.
Downregulation of basal myosin-II is required for cell shape changes and tissue invagination.
Abstract:
Tissue invagination drives embryo remodeling and assembly of internal organs during animal development. While the role of actomyosin-mediated apical constriction in initiating inward folding is well established, computational models suggest relaxation of the basal surface as an additional requirement. However, the lack of genetic mutations interfering specifically with basal relaxation has made it difficult to test its requirement during invagination so far. Here we use optogenetics to quantitatively control myosin-II levels at the basal surface of invaginating cells during Drosophila gastrulation. We show that while basal myosin-II is lost progressively during ventral furrow formation, optogenetics allows the maintenance of pre-invagination levels over time. Quantitative imaging demonstrates that optogenetic activation prior to tissue bending slows down cell elongation and blocks invagination. Activation after cell elongation and tissue bending has initiated inhibits cell shortening and folding of the furrow into a tube-like structure. Collectively, these data demonstrate the requirement of myosin-II polarization and basal relaxation throughout the entire invagination process.
371.
Programming Bacteria With Light—Sensors and Applications in Synthetic Biology
Abstract:
Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.
372.
Membrane dynamics induced by a PIP3 optogenetic tool.
Abstract:
Membrane dynamic structures such as filopodia, lamellipodia, and ruffles have important cellular functions in phagocytosis and cell motility, and in pathological states such as cancer metastasis. Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is a crucial lipid that regulates PIP3 dynamics. Investigations of how PIP3 is involved in these functions have mainly relied on pharmacological interventions, and therefore have not generated detailed spatiotemporal information of membrane dynamics upon PIP3 production. In the present study, we applied an optogenetic approach using the CRY2–CIBN system. Using this system, we revealed that local PIP3 generation induced directional cell motility and membrane ruffles in COS7 cells. Furthermore, combined with structured illumination microscopy (SIM), membrane dynamics were investigated with high spatial resolution. We observed PIP3-induced apical ruffles and unique actin fiber behavior in that a single actin fiber protruded from the plasma membrane was taken up into the plasma membrane without depolymerization. This system has the potential to investigate other high-level cell motility and dynamic behaviors such as cancer cell invasion and wound healing with high spatiotemporal resolution, and could provide new insights of biological sciences for membrane dynamics.
373.
Bringing Light to Transcription: The Optogenetics Repertoire.
Abstract:
The ability to manipulate expression of exogenous genes in particular regions of living organisms has profoundly transformed the way we study biomolecular processes involved in both normal development and disease. Unfortunately, most of the classical inducible systems lack fine spatial and temporal accuracy, thereby limiting the study of molecular events that strongly depend on time, duration of activation, or cellular localization. By exploiting genetically engineered photo sensing proteins that respond to specific wavelengths, we can now provide acute control of numerous molecular activities with unprecedented precision. In this review, we present a comprehensive breakdown of all of the current optogenetic systems adapted to regulate gene expression in both unicellular and multicellular organisms. We focus on the advantages and disadvantages of these different tools and discuss current and future challenges in the successful translation to more complex organisms.
374.
Real-Time Genetic Compensation Defines the Dynamic Demands of Feedback Control.
Abstract:
Biological signaling networks use feedback control to dynamically adjust their operation in real time. Traditional static genetic methods such as gene knockouts or rescue experiments can often identify the existence of feedback interactions but are unable to determine what feedback dynamics are required. Here, we implement a new strategy, closed-loop optogenetic compensation (CLOC), to address this problem. Using a custom-built hardware and software infrastructure, CLOC monitors, in real time, the output of a pathway deleted for a feedback regulator. A minimal model uses these measurements to calculate and deliver-on the fly-an optogenetically enabled transcriptional input designed to compensate for the effects of the feedback deletion. Application of CLOC to the yeast pheromone response pathway revealed surprisingly distinct dynamic requirements for three well-studied feedback regulators. CLOC, a marriage of control theory and traditional genetics, presents a broadly applicable methodology for defining the dynamic function of biological feedback regulators.
375.
RalB directly triggers invasion downstream Ras by mobilizing the Wave complex.
-
Zago, G
-
Veith, I
-
Singh, M
-
Fuhrmann, L
-
de Beco, S
-
Remorino, A
-
Takaoka, S
-
Palmeri, M
-
Berger, F
-
Brandon, N
-
El Marjou, A
-
Vincent-Salomon, A
-
Camonis, J
-
Coppey, M
-
Parrini, MC
Abstract:
The two Ral GTPases, RalA and RalB, have crucial roles downstream Ras oncoproteins in human cancers; in particular, RalB is involved in invasion and metastasis. However, therapies targeting Ral signalling are not available yet. By a novel optogenetic approach, we found that light-controlled activation of Ral at plasma-membrane promotes the recruitment of the Wave Regulatory Complex (WRC) via its effector exocyst, with consequent induction of protrusions and invasion. We show that active Ras signals to RalB via two RalGEFs (Guanine nucleotide Exchange Factors), RGL1 and RGL2, to foster invasiveness; RalB contribution appears to be more important than that of MAPK and PI3K pathways. Moreover, on the clinical side, we uncovered a potential role of RalB in human breast cancers by determining that RalB expression at protein level increases in a manner consistent with progression toward metastasis. This work highlights the Ras-RGL1/2-RalB-exocyst-WRC axis as appealing target for novel anti-cancer strategies.