Showing 351 - 354 of 354 results
351.
Rapid blue-light-mediated induction of protein interactions in living cells.
Abstract:
Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
352.
Induction of protein-protein interactions in live cells using light.
Abstract:
Protein-protein interactions are essential for many cellular processes. We have developed a technology called light-activated dimerization (LAD) to artificially induce protein hetero- and homodimerization in live cells using light. Using the FKF1 and GIGANTEA (GI) proteins of Arabidopsis thaliana, we have generated protein tags whose interaction is controlled by blue light. We demonstrated the utility of this system with LAD constructs that can recruit the small G-protein Rac1 to the plasma membrane and induce the local formation of lamellipodia in response to focal illumination. We also generated a light-activated transcription factor by fusing domains of GI and FKF1 to the DNA binding domain of Gal4 and the transactivation domain of VP16, respectively, showing that this technology is easily adapted to other systems. These studies set the stage for the development of light-regulated signaling molecules for controlling receptor activation, synapse formation and other signaling events in organisms.
353.
A genetically encoded photoactivatable Rac controls the motility of living cells.
Abstract:
The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
354.
Fast manipulation of cellular cAMP level by light in vivo.
-
Schröder-Lang, S
-
Schwarzel, M
-
Seifert, R
-
Strünker, T
-
Kateriya, S
-
Looser, J
-
Watanabe, M
-
Kaupp, UB
-
Hegemann, P
-
Nagel, G
Abstract:
The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.