Showing 351 - 371 of 371 results
351.
Bidirectional regulation of mRNA translation in mammalian cells by using PUF domains.
Abstract:
The regulation of gene expression is crucial in diverse areas of biological science, engineering, and medicine. A genetically encoded system based on the RNA binding domain of the Pumilio and FBF (PUF) proteins was developed for the bidirectional regulation (i.e., either upregulation or downregulation) of the translation of a target mRNA. PUF domains serve as designable scaffolds for the recognition of specific RNA elements and the specificity can be easily altered to target any 8-nucleotide RNA sequence. The expression of a reporter could be varied by over 17-fold when using PUF-based activators and repressors. The specificity of the method was established by using wild-type and mutant PUF domains. Furthermore, this method could be used to activate the translation of target mRNA downstream of PUF binding sites in a light-dependent manner. Such specific bidirectional control of mRNA translation could be particularly useful in the fields of synthetic biology, developmental biology, and metabolic engineering.
352.
Light-inducible gene regulation with engineered zinc finger proteins.
Abstract:
The coupling of light-inducible protein-protein interactions with gene regulation systems has enabled the control of gene expression with light. In particular, heterodimer protein pairs from plants can be used to engineer a gene regulation system in mammalian cells that is reversible, repeatable, tunable, controllable in a spatiotemporal manner, and targetable to any DNA sequence. This system, Light-Inducible Transcription using Engineered Zinc finger proteins (LITEZ), is based on the blue light-induced interaction of GIGANTEA and the LOV domain of FKF1 that drives the localization of a transcriptional activator to the DNA-binding site of a highly customizable engineered zinc finger protein. This chapter provides methods for modifying LITEZ to target new DNA sequences, engineering a programmable LED array to illuminate cell cultures, and using the modified LITEZ system to achieve spatiotemporal control of transgene expression in mammalian cells.
353.
Genetically engineered photoinducible homodimerization system with improved dimer-forming efficiency.
Abstract:
Vivid (VVD) is a photoreceptor derived from Neurospora Crassa that rapidly forms a homodimer in response to blue light. Although VVD has several advantages over other photoreceptors as photoinducible homodimerization system, VVD has a critical limitation in its low dimer-forming efficiency. To overcome this limitation of wild-type VVD, here we conduct site-directed saturation mutagenesis in the homodimer interface of VVD. We have found that the Ile52Cys mutation of VVD (VVD-52C) substantially improves its homodimer-forming efficiency up to 180%. We have demonstrated the utility of VVD-52C for making a light-inducible gene expression system more robust. In addition, using VVD-52C, we have developed photoactivatable caspase-9, which enables optical control of apoptosis of mammalian cells. The present genetically engineered photoinducible homodimerization system can provide a powerful tool to optically control a broad range of molecular processes in the cell.
354.
An optogenetic gene expression system with rapid activation and deactivation kinetics.
Abstract:
Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach uses an engineered version of EL222, a bacterial light-oxygen-voltage protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (<10 s) and deactivation kinetics (<50 s) and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time.
355.
Optogenetic control of protein kinase activity in mammalian cells.
Abstract:
Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by Arabidopsis thaliana photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells.
356.
Fine tuning the LightOn light-switchable transgene expression system.
Abstract:
Spatiotemporal control of transgene expression in living cells provides new opportunities for the characterization of gene function in complex biological processes. We previously reported a synthetic, light-switchable transgene expression system called LightOn that can be used to control gene expression using blue light. In the present study, we modified the different promoter segments of the light switchable transcription factor GAVPO and the target gene, and assayed their effects on protein expression under dark or light conditions. The results showed that the LightOn system maintained its high on/off ratio under most modifications, but its induction efficiency and background gene expression level can be fine-tuned by modifying the core promoter, the UASG sequence number, the length of the spacer between UASG and the core promoter of the target protein, and the expression level of the GAVPO transcription factor. Thus, the LightOn gene expression system can be adapted to a large range of applications according to the requirements of the background and the induced gene expression.
357.
Light-inducible activation of target mRNA translation in mammalian cells.
Abstract:
A genetically encoded optogenetic system was constructed that activates mRNA translation in mammalian cells in response to light. Blue light induces the reconstitution of an RNA binding domain and a translation initiation domain, thereby activating target mRNA translation downstream of the binding sites.
358.
Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.
Abstract:
Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is highly regulated in a spatiotemporal manner and plays multiple roles in individual cells. However, the local dynamics and primary functions of PIP3 in developing neurons remain unclear because of a lack of techniques for manipulating PIP3 spatiotemporally. We addressed this issue by combining optogenetic control and observation of endogenous PIP3 signaling. Endogenous PIP3 was abundant in actin-rich structures such as growth cones and "waves", and PIP3-rich plasma membranes moved actively within growth cones. To study the role of PIP3 in developing neurons, we developed a PI3K photoswitch that can induce production of PIP3 at specific locations upon blue light exposure. We succeeded in producing PIP3 locally in mouse hippocampal neurons. Local PIP3 elevation at neurite tips did not induce neurite elongation, but it was sufficient to induce the formation of filopodia and lamellipodia. Interestingly, ectopic PIP3 elevation alone activated membranes to form actin-based structures whose behavior was similar to that of growth-cone-like "waves". We also found that endocytosis regulates effective PIP3 concentration at plasma membranes. These results revealed the local dynamics and primary functions of PIP3, providing fundamental information about PIP3 signaling in neurons.
359.
Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch.
Abstract:
Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.
360.
A light-triggered protein secretion system.
Abstract:
Optical control of protein interactions has emerged as a powerful experimental paradigm for manipulating and studying various cellular processes. Tools are now available for controlling a number of cellular functions, but some fundamental processes, such as protein secretion, have been difficult to engineer using current optical tools. Here we use UVR8, a plant photoreceptor protein that forms photolabile homodimers, to engineer the first light-triggered protein secretion system. UVR8 fusion proteins were conditionally sequestered in the endoplasmic reticulum, and a brief pulse of light triggered robust forward trafficking through the secretory pathway to the plasma membrane. UVR8 was not responsive to excitation light used to image cyan, green, or red fluorescent protein variants, allowing multicolor visualization of cellular markers and secreted protein cargo as it traverses the cellular secretory pathway. We implemented this novel tool in neurons to demonstrate restricted, local trafficking of secretory cargo near dendritic branch points.
361.
Multi-chromatic control of mammalian gene expression and signaling.
-
Müller, K
-
Engesser, R
-
Schulz, S
-
Steinberg, T
-
Tomakidi, P
-
Weber, CC
-
Ulm, R
-
Timmer, J
-
Zurbriggen, MD
-
Weber, W
Abstract:
The emergence and future of mammalian synthetic biology depends on technologies for orchestrating and custom tailoring complementary gene expression and signaling processes in a predictable manner. Here, we demonstrate for the first time multi-chromatic expression control in mammalian cells by differentially inducing up to three genes in a single cell culture in response to light of different wavelengths. To this end, we developed an ultraviolet B (UVB)-inducible expression system by designing a UVB-responsive split transcription factor based on the Arabidopsis thaliana UVB receptor UVR8 and the WD40 domain of COP1. The system allowed high (up to 800-fold) UVB-induced gene expression in human, monkey, hamster and mouse cells. Based on a quantitative model, we determined critical system parameters. By combining this UVB-responsive system with blue and red light-inducible gene control technology, we demonstrate multi-chromatic multi-gene control by differentially expressing three genes in a single cell culture in mammalian cells, and we apply this system for the multi-chromatic control of angiogenic signaling processes. This portfolio of optogenetic tools enables the design and implementation of synthetic biological networks showing unmatched spatiotemporal precision for future research and biomedical applications.
362.
Optogenetic protein clustering and signaling activation in mammalian cells.
Abstract:
We report an optogenetic method based on Arabidopsis thaliana cryptochrome 2 for rapid and reversible protein oligomerization in response to blue light. We demonstrated its utility by photoactivating the β-catenin pathway, achieving a transcriptional response higher than that obtained with the natural ligand Wnt3a. We also demonstrated the modularity of this approach by photoactivating RhoA with high spatiotemporal resolution, thereby suggesting a previously unknown mode of activation for this Rho GTPase.
363.
Optical control of protein activity by fluorescent protein domains.
Abstract:
Fluorescent proteins (FPs) are widely used as optical sensors, whereas other light-absorbing domains have been used for optical control of protein localization or activity. Here, we describe light-dependent dissociation and association in a mutant of the photochromic FP Dronpa, and we used it to control protein activities with light. We created a fluorescent light-inducible protein design in which Dronpa domains are fused to both termini of an enzyme domain. In the dark, the Dronpa domains associate and cage the protein, but light induces Dronpa dissociation and activates the protein. This method enabled optical control over guanine nucleotide exchange factor and protease domains without extensive screening. Our findings extend the applications of FPs from exclusively sensing functions to also encompass optogenetic control.
364.
Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors.
Abstract:
Advanced gene regulatory systems are necessary for scientific research, synthetic biology, and gene-based medicine. An ideal system would allow facile spatiotemporal manipulation of gene expression within a cell population that is tunable, reversible, repeatable, and can be targeted to diverse DNA sequences. To meet these criteria, a gene regulation system was engineered that combines light-sensitive proteins and programmable zinc finger transcription factors. This system, light-inducible transcription using engineered zinc finger proteins (LITEZ), uses two light-inducible dimerizing proteins from Arabidopsis thaliana, GIGANTEA and the LOV domain of FKF1, to control synthetic zinc finger transcription factor activity in human cells. Activation of gene expression in human cells engineered with LITEZ was reversible and repeatable by modulating the duration of illumination. The level of gene expression could also be controlled by modulating light intensity. Finally, gene expression could be activated in a spatially defined pattern by illuminating the human cell culture through a photomask of arbitrary geometry. LITEZ enables new approaches for precisely regulating gene expression in biotechnology and medicine, as well as studying gene function, cell-cell interactions, and tissue morphogenesis.
365.
Spatiotemporal control of gene expression by a light-switchable transgene system.
Abstract:
We developed a light-switchable transgene system based on a synthetic, genetically encoded light-switchable transactivator. The transactivator binds promoters upon blue-light exposure and rapidly initiates transcription of target transgenes in mammalian cells and in mice. This transgene system provides a robust and convenient way to spatiotemporally control gene expression and can be used to manipulate many biological processes in living systems with minimal perturbation.
366.
Engineering a photoactivated caspase-7 for rapid induction of apoptosis.
Abstract:
Apoptosis is a cell death program involved in the development of multicellular organisms, immunity, and pathologies ranging from cancer to HIV/AIDS. We present an engineered protein that causes rapid apoptosis of targeted cells in monolayer culture after stimulation with blue light. Cells transfected with the protein switch L57V, a tandem fusion of the light-sensing LOV2 domain and the apoptosis-executing domain from caspase-7, rapidly undergo apoptosis within 60 min after light stimulation. Constant illumination of under 5 min or oscillating with 1 min exposure had no effect, suggesting that cells have natural tolerance to a short duration of caspase-7 activity. Furthermore, the overexpression of Bcl-2 prevented L57V-mediated apoptosis, suggesting that although caspase-7 activation is sufficient to start apoptosis, it requires mitochondrial contribution to fully commit.
367.
A synthetic photoactivated protein to generate local or global Ca(2+) signals.
Abstract:
Ca(2+) signals regulate diverse physiological processes through tightly regulated fluxes varying in location, time, frequency, and amplitude. Here, we developed LOVS1K, a genetically encoded and photoactivated synthetic protein to generate local or global Ca(2+) signals. With 300 ms blue light exposure, LOVS1K translocated to Orai1, a plasma membrane Ca(2+) channel, within seconds, generating a local Ca(2+) signal on the plasma membrane, and returning to the cytoplasm after tens of seconds. With repeated photoactivation, global Ca(2+) signals in the cytoplasm were generated to modulate engineered Ca(2+)-inducible proteins. Although Orai1 is typically associated with global store-operated Ca(2+) entry, we demonstrate that Orai1 can also generate local Ca(2+) influx on the plasma membrane. Our photoactivation system can be used to generate spatially and temporally precise Ca(2+) signals and to engineer synthetic proteins that respond to specific Ca(2+) signals.
368.
Rapid blue-light-mediated induction of protein interactions in living cells.
Abstract:
Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.
369.
Induction of protein-protein interactions in live cells using light.
Abstract:
Protein-protein interactions are essential for many cellular processes. We have developed a technology called light-activated dimerization (LAD) to artificially induce protein hetero- and homodimerization in live cells using light. Using the FKF1 and GIGANTEA (GI) proteins of Arabidopsis thaliana, we have generated protein tags whose interaction is controlled by blue light. We demonstrated the utility of this system with LAD constructs that can recruit the small G-protein Rac1 to the plasma membrane and induce the local formation of lamellipodia in response to focal illumination. We also generated a light-activated transcription factor by fusing domains of GI and FKF1 to the DNA binding domain of Gal4 and the transactivation domain of VP16, respectively, showing that this technology is easily adapted to other systems. These studies set the stage for the development of light-regulated signaling molecules for controlling receptor activation, synapse formation and other signaling events in organisms.
370.
A genetically encoded photoactivatable Rac controls the motility of living cells.
Abstract:
The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.
371.
Fast manipulation of cellular cAMP level by light in vivo.
-
Schröder-Lang, S
-
Schwarzel, M
-
Seifert, R
-
Strünker, T
-
Kateriya, S
-
Looser, J
-
Watanabe, M
-
Kaupp, UB
-
Hegemann, P
-
Nagel, G
Abstract:
The flagellate Euglena gracilis contains a photoactivated adenylyl cyclase (PAC), consisting of the flavoproteins PACalpha and PACbeta. Here we report functional expression of PACs in Xenopus laevis oocytes, HEK293 cells and in Drosophila melanogaster, where neuronal expression yields light-induced changes in behavior. The activity of PACs is strongly and reversibly enhanced by blue light, providing a powerful tool for light-induced manipulation of cAMP in animal cells.