Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 301 - 325 of 476 results
301.

New approaches for solving old problems in neuronal protein trafficking.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
Mol Cell Neurosci, 10 Apr 2018 DOI: 10.1016/j.mcn.2018.04.004 Link to full text
Abstract: Fundamental cellular properties are determined by the repertoire and abundance of proteins displayed on the cell surface. As such, the trafficking mechanisms for establishing and maintaining the surface proteome must be tightly regulated for cells to respond appropriately to extracellular cues, yet plastic enough to adapt to ever-changing environments. Not only are the identity and abundance of surface proteins critical, but in many cases, their regulated spatial positioning within surface nanodomains can greatly impact their function. In the context of neuronal cell biology, surface levels and positioning of ion channels and neurotransmitter receptors play essential roles in establishing important properties, including cellular excitability and synaptic strength. Here we review our current understanding of the trafficking pathways that control the abundance and localization of proteins important for synaptic function and plasticity, as well as recent technological advances that are allowing the field to investigate protein trafficking with increasing spatiotemporal precision.
302.

Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells.

violet cPAC E. coli in vitro Immediate control of second messengers
J Biol Chem, 9 Apr 2018 DOI: 10.1074/jbc.ra118.002258 Link to full text
Abstract: Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl-cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in non-photosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleussp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibited a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells. tissues, and whole organisms with light across the visible spectrum and into near IR.
303.

Synthetic Biology Makes Polymer Materials Count.

red PhyB/PIF6 in vitro Extracellular optogenetics
Adv Mater, 30 Mar 2018 DOI: 10.1002/adma.201800472 Link to full text
Abstract: Synthetic biology applies engineering concepts to build cellular systems that perceive and process information. This is achieved by assembling genetic modules according to engineering design principles. Recent advance in the field has contributed optogenetic switches for controlling diverse biological functions in response to light. Here, the concept is introduced to apply synthetic biology switches and design principles for the synthesis of multi-input-processing materials. This is exemplified by the synthesis of a materials system that counts light pulses. Guided by a quantitative mathematical model, functional synthetic biology-derived modules are combined into a polymer framework resulting in a biohybrid materials system that releases distinct output molecules specific to the number of input light pulses detected. Further demonstration of modular extension yields a light pulse-counting materials system to sequentially release different enzymes catalyzing a multistep biochemical reaction. The resulting smart materials systems can provide novel solutions as integrated sensors and actuators with broad perspectives in fundamental and applied research.
304.

Induction of signal transduction using non-channelrhodopsin-type optogenetic tools.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Chembiochem, 25 Mar 2018 DOI: 10.1002/cbic.201700635 Link to full text
Abstract: Signal transductions are the basis for all cellular functions. Previous studies investigating signal transductions mainly relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies do not allow the modulation of protein activity in cells, tissues, and organs in animals with high spatial and temporal precision. Recently, non-channelrhodopsin-type optogenetic tools for regulating signal transduction have emerged. These photoswitches address several disadvantages of previous techniques, and allow us to control a variety of signal transductions such as cell membrane dynamics, calcium signaling, lipid signaling, and apoptosis. In this review, we summarize recent advances in the development of such photoswitches and how these optotools are applied to signaling processes.
305.

CRISPR/dCas9 Switch Systems for Temporal Transcriptional Control.

blue red Cryptochromes LOV domains Phytochromes Review
Methods Mol Biol, 10 Mar 2018 DOI: 10.1007/978-1-4939-7774-1_8 Link to full text
Abstract: In a swift revolution, CRISPR/Cas9 has reshaped the means and ease of interrogating biological questions. Particularly, mutants that result in a nuclease-deactivated Cas9 (dCas9) provide scientists with tools to modulate transcription of genomic loci at will by targeting transcriptional effector domains. To interrogate the temporal order of events during transcriptional regulation, rapidly inducible CRISPR/dCas9 systems provide previously unmet molecular tools. In only a few years of time, numerous light and chemical-inducible switches have been applied to CRISPR/dCas9 to generate dCas9 switches. As these inducible switch systems are able to modulate dCas9 directly at the protein level, they rapidly affect dCas9 stability, activity, or target binding and subsequently rapidly influence downstream transcriptional events. Here we review the current state of such biotechnological CRISPR/dCas9 enhancements. Specifically we provide details on their flaws and strengths and on the differences in molecular design between the switch systems. With this we aim to provide a selection guide for researchers with keen interest in rapid temporal control over transcriptional modulation through the CRISPR/dCas9 system.
306.

Optogenetically controlled protein kinases for regulation of cellular signaling.

blue cyan green near-infrared red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Soc Rev, 2 Mar 2018 DOI: 10.1039/c7cs00404d Link to full text
Abstract: Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
307.

Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells.

blue near-infrared AsLOV2 BphP1/Q-PAS1 Cos-7 HEK293 HeLa Neuro-2a rat cortical neurons SH-SY5Y U-2 OS Multichromatic
Chembiochem, 21 Feb 2018 DOI: 10.1002/cbic.201700642 Link to full text
Abstract: Near-infrared (NIR) light-inducible binding of bacterial phytochrome BphP1 to its engineered partner QPAS1 is used for optical protein regulation in mammalian cells. However, there are no data on the application of the BphP1-QPAS1 pair in cells derived from various mammalian tissues. Here, we tested functionality of two BphP1-QPAS1-based optogenetic tools, such as an NIR and blue light-sensing system for control of protein localization (iRIS) and an NIR light-sensing system for transcription activation (TA), in several cell types including cortical neurons. We found that the performance of these optogenetic tools often rely on physiological properties of a specific cell type, such as nuclear transport, which may limit applicability of blue light-sensitive component of iRIS. In contrast, the NIR-light-sensing part of iRIS performed well in all tested cell types. The TA system showed the best performance in HeLa, U-2 OS and HEK-293 cells. Small size of the QPAS1 component allows designing AAV viral particles, which were applied to deliver the TA system to neurons.
308.

Optogenetics in cancer drug discovery.

blue cyan red BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Expert Opin Drug Discov, 15 Feb 2018 DOI: 10.1080/17460441.2018.1437138 Link to full text
Abstract: The discovery and domestication of biomolecules that respond to light has taken a light of its own, providing new molecular tools with incredible spatio-temporal resolution to manipulate cellular behavior. Areas covered: The authors herein analyze the current optogenetic tools in light of their current, and potential, uses in cancer drug discovery, biosafety and cancer biology. Expert opinion: The pipeline from drug discovery to the clinic is plagued with drawbacks, where most drugs fail in either efficacy or safety. These issues require the redesign of the pipeline and the development of more controllable/personalized therapies. Light is, aside from inexpensive, almost harmless if used appropriately, can be directed to single cells or organs with controllable penetration, and comes in a variety of wavelengths. Light-responsive systems can activate, inhibit or compensate cell signaling pathways or specific cellular events, allowing the specific control of the genome and epigenome, and modulate cell fate and transformation. These synthetic molecular tools have the potential to revolutionize drug discovery and cancer research.
309.

A miniaturized E. coli green light sensor with high dynamic range.

green CcaS/CcaR E. coli
Chembiochem, 8 Feb 2018 DOI: 10.1002/cbic.201800007 Link to full text
Abstract: Genetically-engineered photoreceptors enable unrivaled control over gene expression. Previously, we ported the Synechocystis PCC 6803 CcaSR two-component system, which is activated by green light and de-activated by red, into E. coli, resulting in a sensor with 6-fold dynamic range. Later, we optimized pathway protein expression levels and the output promoter sequence to decrease transcriptional leakiness and increase the dynamic range to approximately 120-fold. These CcaSR v1.0 and 2.0 systems have been used for precise quantitative, temporal, and spatial control of gene expression for a variety of applications. Recently, others have deleted two PAS domains of unknown function from the CcaS sensor histidine kinase in a CcaSR v1.0-like system. Here, we apply these deletions to CcaSR v2.0, resulting in a v3.0 light sensor with 4-fold lower leaky output and nearly 600-fold dynamic range. We demonstrate that the PAS domain deletions have no deleterious effect on CcaSR green light sensitivity or response dynamics. CcaSR v3.0 is the best performing engineered bacterial green light sensor available, and should have broad applications in fundamental and synthetic biology studies.
310.

A novel optogenetically tunable frequency modulating oscillator.

green violet CcaS/CcaR UirS/UirR in silico
PLoS ONE, 1 Feb 2018 DOI: 10.1371/journal.pone.0183242 Link to full text
Abstract: Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.
311.

Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics.

red PhyB/PIF3 HEK293 HeLa Huh-7 NIH/3T3
ACS Synth Biol, 4 Jan 2018 DOI: 10.1021/acssynbio.7b00413 Link to full text
Abstract: Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics, is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and for the first time, combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
312.

Optogenetic tools for cell biological applications.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
J Thorac Dis, 9 Dec 2017 DOI: 10.21037/jtd.2017.11.73 Link to full text
Abstract: Abstract not available.
313.

Optogenetics reprogramming of planktonic cells for biofilm formation.

red BphS P. aeruginosa Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions Immediate control of second messengers
bioRxiv, 4 Dec 2017 DOI: 10.1101/229229 Link to full text
Abstract: Single-cell behaviors play essential roles during early-stage biofilms formation. In this study, we evaluated whether biofilm formation could be guided by precisely manipulating single cells behaviors. Thus, we established an illumination method to precisely manipulate the type IV pili (TFP) mediated motility and microcolony formation of Pseudomonas aeruginosa by using a combination of a high-throughput bacterial tracking algorithm, optogenetic manipulation and adaptive microscopy. We termed this method as Adaptive Tracking Illumination (ATI). We reported that ATI enables the precise manipulation of TFP mediated motility and microcolony formation during biofilm formation by manipulating bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) levels in single cells. Moreover, we showed that the spatial organization of single cells in mature biofilms can be controlled using ATI. Thus, the established method (i.e., ATI) can markedly promote ongoing studies of biofilms.
314.

Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering.

blue near-infrared BphP1/Q-PAS1 FKF1/GI iLID Magnets HEK293T NIH/3T3 primary mouse cortical neurons Organelle manipulation
ACS Synth Biol, 4 Dec 2017 DOI: 10.1021/acssynbio.7b00248 Link to full text
Abstract: The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.
315.

Illuminating information transfer in signaling dynamics by optogenetics.

blue red Cryptochromes LOV domains Phytochromes Review
Curr Opin Cell Biol, 22 Nov 2017 DOI: 10.1016/j.ceb.2017.11.002 Link to full text
Abstract: Cells receive diverse signaling cues from their environment that trigger cascades of biochemical reactions in a dynamic manner. Single-cell imaging technologies have revealed that not only molecular species but also dynamic patterns of signaling inputs determine the fates of signal-receiving cells; however it has been challenging to elucidate how such dynamic information is delivered and decoded in complex networks of inter-cellular and inter-molecular interactions. The recent development of optogenetic technology with photo-sensitive proteins has changed this situation; the combination of microscopy and optogenetics provides fruitful insights into the mechanism of dynamic information processing at the single-cell level. Here, we review recent efforts to visualize the flows of dynamic patterns in signaling pathways, which utilize methods integrating single-cell imaging and optogenetics.
316.

Emerging approaches for spatiotemporal control of targeted genome with inducible CRISPR-Cas9.

blue cyan near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Anal Chem, 21 Nov 2017 DOI: 10.1021/acs.analchem.7b04757 Link to full text
Abstract: The breakthrough CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) nuclease has revolutionized our ability in genome engineering. Although Cas9 is already a powerful tool for simple and efficient target endogenous gene manipulation, further engineering of Cas9 will improve the performance of Cas9, such as gene-editing efficiency and accuracy in vivo, and expand the application possibility of this Cas9 technology. The emerging inducible Cas9 methods, which can control the activity of Cas9 using an external stimulus such as chemicals and light, have the potential to provide spatiotemporal gene manipulation in user-defined cell population at a specific time and improve the accuracy of Cas9-mediated genome editing. In this review, we focus on the recent advance in inducible Cas9 technologies, especially light-inducible Cas9, and related methodologies, and also discuss future directions of this emerging tools.
317.

Shaping bacterial population behavior through computer-interfaced control of individual cells.

green CcaS/CcaR E. coli
Nat Commun, 16 Nov 2017 DOI: 10.1038/s41467-017-01683-1 Link to full text
Abstract: Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.
318.

Cell membrane dynamics induction using optogenetic tools.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Biochem Biophys Res Commun, 16 Nov 2017 DOI: 10.1016/j.bbrc.2017.11.091 Link to full text
Abstract: Structures arising from actin-based cell membrane movements, including ruffles, lamellipodia, and filopodia, play important roles in a broad spectrum of cellular functions, such as cell motility, axon guidance in neurons, wound healing, and micropinocytosis. Previous studies investigating these cell membrane dynamics often relied on pharmacological inhibition, RNA interference, and constitutive active/dominant negative protein expression systems. However, such studies did not allow the modulation of protein activity at specific regions of cells, tissues, and organs in animals with high spatial and temporal precision. Recently, optogenetic tools for inducing cell membrane dynamics have been developed which address several of the disadvantages of previous techniques. In a recent study, we developed a powerful optogenetic tool, called the Magnet system, to change cell membrane dynamics through Tiam1 and PIP3 signal transductions with high spatial and temporal resolution. In this review, we summarize recent advances in optogenetic tools that allow us to induce actin-regulated cell membrane dynamics and unique membrane ruffles that we discovered using our Magnet system.
319.

Shedding light on the role of cAMP in mammalian sperm physiology.

blue red BLUF domains Phytochromes Review
Mol Cell Endocrinol, 13 Nov 2017 DOI: 10.1016/j.mce.2017.11.008 Link to full text
Abstract: Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
320.

Engineering an E. coli Near-Infrared Light Sensor.

near-infrared BphP1/PpsR2 E. coli
ACS Synth Biol, 9 Nov 2017 DOI: 10.1021/acssynbio.7b00289 Link to full text
Abstract: Optogenetics is a technology wherein researchers combine light and genetically engineered photoreceptors to control biological processes with unrivaled precision. Near-infrared (NIR) wavelengths (>700 nm) are desirable optogenetic inputs due to their low phototoxicity and spectral isolation from most photoproteins. The bacteriophytochrome photoreceptor 1 (BphP1), found in several purple photosynthetic bacteria, senses NIR light and activates transcription of photosystem promoters by binding to and inhibiting the transcriptional repressor PpsR2. Here, we examine the response of a library of output promoters to increasing levels of Rhodopseudomonas palustris PpsR2 expression, and we identify that of Bradyrhizobium sp. BTAi1 crtE as the most strongly repressed in Escherichia coli. Next, we optimize Rps. palustris bphP1 and ppsR2 expression in a strain engineered to produce the required chromophore biliverdin IXα in order to demonstrate NIR-activated transcription. Unlike a previously engineered bacterial NIR photoreceptor, our system does not require production of a second messenger, and it exhibits rapid response dynamics. It is also the most red-shifted bacterial optogenetic tool yet reported by approximately 50 nm. Accordingly, our BphP1-PpsR2 system has numerous applications in bacterial optogenetics.
321.

Optogenetic Tools for Subcellular Applications in Neuroscience.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Neuron, 1 Nov 2017 DOI: 10.1016/j.neuron.2017.09.047 Link to full text
Abstract: The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
322.

Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.

red PhyB/PIF3 PhyB/PIF6 HEK293T HeLa mESCs Signaling cascade control
Proc Natl Acad Sci USA, 24 Oct 2017 DOI: 10.1073/pnas.1707190114 Link to full text
Abstract: Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
323.

Re-engineering the two-component systems as light-regulated in Escherichia coli.

red Cph1 E. coli
J Biosci, 20 Oct 2017 DOI: 10.1007/s12038-017-9711-8 Link to full text
Abstract: Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis, so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarXNarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.
324.

Using Light-Activated Enzymes for Modulating Intracellular c-di-GMP Levels in Bacteria.

blue red BphS EB1 A. brasilense E. coli Multichromatic
Methods Mol Biol, 10 Sep 2017 DOI: 10.1007/978-1-4939-7240-1_14 Link to full text
Abstract: Signaling pathways involving second messenger c-di-GMP regulate various aspects of bacterial physiology and behavior. We describe the use of a red light-activated diguanylate cyclase (c-di-GMP synthase) and a blue light-activated c-di-GMP phosphodiesterase (hydrolase) for manipulating intracellular c-di-GMP levels in bacterial cells. We illustrate the application of these enzymes in regulating several c-di-GMP-dependent phenotypes, i.e., motility and biofilm phenotypes in E. coli and chemotactic behavior in the alphaproteobacterium Azospirillum brasilense. We expect these light-activated enzymes to be also useful in regulating c-di-GMP-dependent processes occurring at the fast timescale, for spatial control of bacterial populations, as well as for analyzing c-di-GMP-dependent phenomena at the single-cell level.
325.

Applications of optobiology in intact cells and multi-cellular organisms.

blue cyan green near-infrared red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Mol Biol, 4 Sep 2017 DOI: 10.1016/j.jmb.2017.08.015 Link to full text
Abstract: Temporal kinetics and spatial coordination of signal transduction in cells are vital for cell fate determination. Tools that allow for precise modulation of spatiotemporal regulation of intracellular signaling in intact cells and multicellular organisms remain limited. The emerging optobiological approaches use light to control protein-protein interaction in live cells and multicellular organisms. Optobiology empowers light-mediated control of diverse cellular and organismal functions such as neuronal activity, intracellular signaling, gene expression, cell proliferation, differentiation, migration, and apoptosis. In this review, we highlight recent developments in optobiology, focusing on new features of second-generation optobiological tools. We cover applications of optobiological approaches in the study of cellular and organismal functions, discuss current challenges, and present our outlook. Taking advantage of the high spatial and temporal resolution of light control, optobiology promises to provide new insights into the coordination of signaling circuits in intact cells and multicellular organisms.
Submit a new publication to our database