Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 301 - 325 of 705 results
301.

Synthetic biology as driver for the biologization of materials sciences.

blue cyan red UV BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Mater Today Bio, 26 May 2021 DOI: 10.1016/j.mtbio.2021.100115 Link to full text
Abstract: Materials in nature have fascinating properties that serve as a continuous source of inspiration for materials scientists. Accordingly, bio-mimetic and bio-inspired approaches have yielded remarkable structural and functional materials for a plethora of applications. Despite these advances, many properties of natural materials remain challenging or yet impossible to incorporate into synthetic materials. Natural materials are produced by living cells, which sense and process environmental cues and conditions by means of signaling and genetic programs, thereby controlling the biosynthesis, remodeling, functionalization, or degradation of the natural material. In this context, synthetic biology offers unique opportunities in materials sciences by providing direct access to the rational engineering of how a cell senses and processes environmental information and translates them into the properties and functions of materials. Here, we identify and review two main directions by which synthetic biology can be harnessed to provide new impulses for the biologization of the materials sciences: first, the engineering of cells to produce precursors for the subsequent synthesis of materials. This includes materials that are otherwise produced from petrochemical resources, but also materials where the bio-produced substances contribute unique properties and functions not existing in traditional materials. Second, engineered living materials that are formed or assembled by cells or in which cells contribute specific functions while remaining an integral part of the living composite material. We finally provide a perspective of future scientific directions of this promising area of research and discuss science policy that would be required to support research and development in this field.
302.

Optogenetic Control of the Canonical Wnt Signaling Pathway During Xenopus laevis Embryonic Development.

blue CRY2/CIB1 CRY2/CRY2 BHK-21 HEK293T Xenopus in vivo Signaling cascade control Developmental processes
J Mol Biol, 19 May 2021 DOI: 10.1016/j.jmb.2021.167050 Link to full text
Abstract: Optogenetics uses light-inducible protein-protein interactions to precisely control the timing, localization, and intensity of signaling activity. The precise spatial and temporal resolution of this emerging technology has proven extremely attractive to the study of embryonic development, a program faithfully replicated to form the same organism from a single cell. We have previously performed a comparative study for optogenetic activation of receptor tyrosine kinases, where we found that the cytoplasm-to-membrane translocation-based optogenetic systems outperform the membrane-anchored dimerization systems in activating the receptor tyrosine kinase signaling in live Xenopus embryos. Here, we determine if this engineering strategy can be generalized to other signaling pathways involving membrane-bound receptors. As a proof of concept, we demonstrate that the cytoplasm-to-membrane translocation of the low-density lipoprotein receptor-related protein-6 (LRP6), a membrane-bound coreceptor for the canonical Wnt pathway, triggers Wnt activity. Optogenetic activation of LRP6 leads to axis duplication in developing Xenopus embryos, indicating that the cytoplasm-to-membrane translocation of the membrane-bound receptor could be a generalizable strategy for the construction of optogenetic systems.
303.

Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement.

blue CRY2/CIB1 S. cerevisiae
Elife, 18 May 2021 DOI: 10.7554/elife.66238 Link to full text
Abstract: Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
304.

Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 18 May 2021 DOI: 10.3390/ijms22105300 Link to full text
Abstract: Biological signals are sensed by their respective receptors and are transduced and processed by a sophisticated intracellular signaling network leading to a signal-specific cellular response. Thereby, the response to the signal depends on the strength, the frequency, and the duration of the stimulus as well as on the subcellular signal progression. Optogenetic tools are based on genetically encoded light-sensing proteins facilitating the precise spatiotemporal control of signal transduction pathways and cell fate decisions in the absence of natural ligands. In this review, we provide an overview of optogenetic approaches connecting light-regulated protein-protein interaction or caging/uncaging events with steering the function of signaling proteins. We briefly discuss the most common optogenetic switches and their mode of action. The main part deals with the engineering and application of optogenetic tools for the control of transmembrane receptors including receptor tyrosine kinases, the T cell receptor and integrins, and their effector proteins. We also address the hallmarks of optogenetics, the spatial and temporal control of signaling events.
305.

Optogenetic-induced multimerization of the dopamine transporter increases uptake and trafficking to the plasma membrane.

blue CRY2/CRY2 HEK293 SH-SY5Y Control of vesicular transport
J Biol Chem, 17 May 2021 DOI: 10.1016/j.jbc.2021.100787 Link to full text
Abstract: The dopamine transporter (DAT) is essential for the reuptake of the released neurotransmitter dopamine (DA) in the brain. Psychostimulants, methamphetamine (METH) and cocaine (COC), have been reported to induce the formation of DAT multimeric complexes in vivo and in vitro. The interpretation of DAT multimer function has been primarily in the context of compounds that induce structural and functional modifications of DAT, complicating the understanding of the significance of DAT multimers. To examine multimerization in the absence of DAT ligands as well as in their presence, we developed a novel, optogenetic fusion chimera of cryptochrome 2 and DAT with a mCherry fluorescent reporter (Cry2-DAT). Using blue light to induce Cry2-DAT multimeric protein complex formation, we were able to simultaneously test the functional contributions of DAT multimerization in the absence or presence of substrates or inhibitors with high spatiotemporal precision. We found that blue light-stimulated Cry2-DAT multimers significantly increased IDT307 uptake and MFZ 9-18 binding in the absence of ligands as well as after METH and nomifensine (NOM) treatment. Blue light induced Cry2-DAT multimerization increased colocalization with recycling endosomal marker Rab11 and had decreased presence in Rab5-positive early endosomes and Rab7-positive late endosomes. Our data suggest that the increased uptake and binding results from induced and rapid trafficking of DAT multimers to the plasma membrane. Our data suggest that DAT multimers may function to help maintain DA homeostasis.
306.

Optogenetic Control of Non-Apoptotic Cell Death.

blue cpLOV2 cpLOVTRAP CRY2/CRY2 LOVTRAP 786-O B16-F0 E. coli HEK293T HeLa Jurkat Signaling cascade control Cell death
Adv Biology, 6 May 2021 DOI: 10.1002/advs.202100424 Link to full text
Abstract: Herein, a set of optogenetic tools (designated LiPOP) that enable photoswitchable necroptosis and pyroptosis in live cells with varying kinetics, is introduced. The LiPOP tools allow reconstruction of the key molecular steps involved in these two non-apoptotic cell death pathways by harnessing the power of light. Further, the use of LiPOPs coupled with upconversion nanoparticles or bioluminescence is demonstrated to achieve wireless optogenetic or chemo-optogenetic killing of cancer cells in multiple mouse tumor models. LiPOPs can trigger necroptotic and pyroptotic cell death in cultured prokaryotic or eukaryotic cells and in living animals, and set the stage for studying the role of non-apoptotic cell death pathways during microbial infection and anti-tumor immunity.
307.

The Rise of Molecular Optogenetics.

blue green Cobalamin-binding domains Cryptochromes LOV domains Review
Adv Biol (Weinh), May 2021 DOI: 10.1002/adbi.202100776 Link to full text
Abstract: Abstract not available.
308.

PIP2 regulation of TRPC5 channel activation and desensitization.

blue CRY2/CIB1 HEK293T Immediate control of second messengers
J Biol Chem, 29 Apr 2021 DOI: 10.1016/j.jbc.2021.100726 Link to full text
Abstract: Transient receptor potential canonical type 5 (TRPC5) ion channels are expressed in the brain and kidney, and have been identified as promising therapeutic targets whose selective inhibition can protect against diseases driven by a leaky kidney filter, such as Focal Segmental Glomerular Sclerosis (FSGS). TRPC5 channels are activated by elevated levels of extracellular Ca2+or lanthanide ions, but also by G protein (Gq/11) stimulation. Phosphatidylinositol bisphosphate (PIP2) hydrolysis by phospholipase C (PLC) enzymes leads to protein kinase C (PKC)-mediated phosphorylation of TRPC5 channels and their subsequent desensitization. However, the roles of PIP2 in activation and maintenance of TRPC5 channel activity via its hydrolysis product diacyl glycerol (DAG), as well as the mechanism of desensitization of TRPC5 activity by DAG-stimulated PKC activity remain unclear. Here, we designed experiments to distinguish between the processes underlying channel activation and inhibition. Using whole-cell patch clamp, we employed an optogenetic tool to dephosphorylate PIP2 and assess channel-PIP2 interactions influenced by activators, such as DAG, or inhibitors, such as PKC phosphorylation. Using total internal reflection microscopy, we assessed channel cell surface density. We show that PIP2 controls both the PKC-mediated inhibition as well as the DAG- and lanthanide-mediated activation of TRPC5 currents via control of gating rather than channel cell surface density. These mechanistic insights promise to aid in the development of more selective and precise inhibitors to block TRPC5 channel activity, and to illuminate new opportunities for targeted therapies for a group of chronic kidney diseases for which there is currently a great unmet need.
309.

Optogenetic-based Localization of Talin to the Plasma Membrane Promotes Activation of β3 Integrins.

blue CRY2/CIB1 CHO murine lung endothelial cells
J Biol Chem, 15 Apr 2021 DOI: 10.1016/j.jbc.2021.100675 Link to full text
Abstract: Interaction of talin with the cytoplasmic tails of integrin β triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin knockout mice, loss of talin interaction with platelet integrin αIIbβ3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVβ3 affects angiogenesis. In normal cells, talin is auto-inhibited and localized in the cytoplasm. Here we employed an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (CRY2 fused to the N-terminus of talin; CIBN-CAAX) responsive to 450 nm (blue) light was inserted into CHO cells and endothelial cells also expressing αIIbβ3 or αVβ3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of CRY2-talin to the CIBN-CAAX-decorated plasma membrane. This resulted in β3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Rap1-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated β3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in β3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.
310.

Rac1 activation can generate untemplated, lamellar membrane ruffles.

blue AsLOV2 CRY2olig HeLa hTERT RPE-1 Control of cytoskeleton / cell motility / cell shape
BMC Biol, 13 Apr 2021 DOI: 10.1186/s12915-021-00997-3 Link to full text
Abstract: Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions.
311.

A modular tool to query and inducibly disrupt biomolecular condensates.

blue CRY2/CIB1 CRY2olig Cos-7 HEK293T Organelle manipulation
Nat Commun, 22 Mar 2021 DOI: 10.1038/s41467-021-22096-1 Link to full text
Abstract: Dynamic membraneless compartments formed by protein condensates have multifunctional roles in cellular biology. Tools that inducibly trigger condensate formation have been useful for exploring their cellular function, however, there are few tools that provide inducible control over condensate disruption. To address this need we developed DisCo (Disassembly of Condensates), which relies on the use of chemical dimerizers to inducibly recruit a ligand to the condensate-forming protein, triggering condensate dissociation. We demonstrate use of DisCo to disrupt condensates of FUS, associated with amyotrophic lateral sclerosis, and to prevent formation of polyglutamine-containing huntingtin condensates, associated with Huntington's disease. In addition, we combined DisCo with a tool to induce condensates with light, CRY2olig, achieving bidirectional control of condensate formation and disassembly using orthogonal inputs of light and rapamycin. Our results demonstrate a method to manipulate condensate states that will have broad utility, enabling better understanding of the biological role of condensates in health and disease.
312.

Optogenetic control of calcium influx in mammalian cells.

blue AsLOV2 CRY2/CRY2 HEK293T HeLa
Methods Enzymol, 16 Mar 2021 DOI: 10.1016/bs.mie.2021.02.010 Link to full text
Abstract: Optogenetics combines optics and genetics to enable non-invasive interrogation of cell physiology at an unprecedented high spatiotemporal resolution. Here, we introduce Opto-CRAC as a set of genetically-encoded calcium actuators (GECAs) engineered from the calcium release-activated calcium (CRAC) channel, which has been tailored for optical control of calcium entry and calcium-dependent physiological responses in non-excitable cells and tissues. We describe a detailed protocol for applying Opto-CRAC as an optogenetic tool to achieve photo-tunable control over intracellular calcium signals and calcium-dependent gene expression in mammalian cells.
313.

Signaling, Deconstructed: Using Optogenetics to Dissect and Direct Information Flow in Biological Systems.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Annu Rev Biomed Eng, 15 Mar 2021 DOI: 10.1146/annurev-bioeng-083120-111648 Link to full text
Abstract: Cells receive enormous amounts of information from their environment. How they act on this information-by migrating, expressing genes, or relaying signals to other cells-comprises much of the regulatory and self-organizational complexity found across biology. The "parts list" involved in cell signaling is generally well established, but how do these parts work together to decode signals and produce appropriate responses? This fundamental question is increasingly being addressed with optogenetic tools: light-sensitive proteins that enable biologists to manipulate the interaction, localization, and activity state of proteins with high spatial and temporal precision. In this review, we summarize how optogenetics is being used in the pursuit of an answer to this question, outlining the current suite of optogenetic tools available to the researcher and calling attention to studies that increase our understanding of and improve our ability to engineer biology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
314.

Multiple Sclerosis-Associated hnRNPA1 Mutations Alter hnRNPA1 Dynamics and Influence Stress Granule Formation.

blue CRY2/CRY2 HEK293T Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Int J Mol Sci, 12 Mar 2021 DOI: 10.3390/ijms22062909 Link to full text
Abstract: Evidence indicates that dysfunctional heterogeneous ribonucleoprotein A1 (hnRNPA1; A1) contributes to the pathogenesis of neurodegeneration in multiple sclerosis. Understanding molecular mechanisms of neurodegeneration in multiple sclerosis may result in novel therapies that attenuate neurodegeneration, thereby improving the lives of MS patients with multiple sclerosis. Using an in vitro, blue light induced, optogenetic protein expression system containing the optogene Cryptochrome 2 and a fluorescent mCherry reporter, we examined the effects of multiple sclerosis-associated somatic A1 mutations (P275S and F281L) in A1 localization, cluster kinetics and stress granule formation in real-time. We show that A1 mutations caused cytoplasmic mislocalization, and significantly altered the kinetics of A1 cluster formation/dissociation, and the quantity and size of clusters. A1 mutations also caused stress granule formation to occur more quickly and frequently in response to blue light stimulation. This study establishes a live cell optogenetics imaging system to probe localization and association characteristics of A1. It also demonstrates that somatic mutations in A1 alter its function and promote stress granule formation, which supports the hypothesis that A1 dysfunction may exacerbate neurodegeneration in multiple sclerosis.
315.

Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution.

blue near-infrared red UV Cryptochromes LOV domains Phytochromes UV receptors Review
J Biol Chem, 4 Mar 2021 DOI: 10.1016/j.jbc.2021.100509 Link to full text
Abstract: Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other SSR systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
316.

Biophysical and biochemical properties of Deup1 self-assemblies: a potential driver for deuterosome formation during multiciliogenesis.

blue CRY2clust HeLa Organelle manipulation
Biol Open, 3 Mar 2021 DOI: 10.1242/bio.056432 Link to full text
Abstract: The deuterosome is a non-membranous organelle involved in large-scale centriole amplification during multiciliogenesis. Deuterosomes are specifically assembled during the process of multiciliogenesis. However, the molecular mechanisms underlying deuterosome formation are poorly understood. In this study, we investigated the molecular properties of deuterosome protein 1 (Deup1), an essential protein involved in deuterosome assembly. We found that Deup1 has the ability to self-assemble into macromolecular condensates both in vitro and in cells. The Deup1-containing structures formed in multiciliogenesis and the Deup1 condensates self-assembled in vitro showed low turnover of Deup1, suggesting that Deup1 forms highly stable structures. Our biochemical analyses revealed that an increase of the concentration of Deup1 and a crowded molecular environment both facilitate Deup1 self-assembly. The self-assembly of Deup1 relies on its N-terminal region, which contains multiple coiled coil domains. Using an optogenetic approach, we demonstrated that self-assembly and the C-terminal half of Deup1 were sufficient to spatially compartmentalize centrosomal protein 152 (Cep152) and polo like kinase 4 (Plk4), master components for centriole biogenesis, in the cytoplasm. Collectively, the present data suggest that Deup1 forms the structural core of the deuterosome through self-assembly into stable macromolecular condensates.This article has an associated First Person interview with the first author of the paper.
317.

Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics.

blue CRY2/CRY2 mESCs U-2 OS Organelle manipulation
Mol Cell, 1 Mar 2021 DOI: 10.1016/j.molcel.2021.01.031 Link to full text
Abstract: The coactivator p300/CREB-binding protein (CBP) regulates genes by facilitating the assembly of transcriptional machinery and by acetylating histones and other factors. However, it remains mostly unclear how both functions of p300 are dynamically coordinated during gene control. Here, we showed that p300 can orchestrate two functions through the formation of dynamic clusters with certain transcription factors (TFs), which is mediated by the interactions between a TF's transactivation domain (TAD) and the intrinsically disordered regions of p300. Co-condensation can enable spatially defined, all-or-none activation of p300's catalytic activity, priming the recruitment of coactivators, including Brd4. We showed that co-condensation can modulate transcriptional initiation rate and burst duration of target genes, underlying nonlinear gene regulatory functions. Such modulation is consistent with how p300 might shape gene bursting kinetics globally. Altogether, these results suggest an intriguing gene regulation mechanism, in which TF and p300 co-condensation contributes to transcriptional bursting regulation and cooperative gene control.
318.

A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.

blue AsLOV2 CRY2/CIB1 Magnets HEK293 S. cerevisiae Transgene expression Nucleic acid editing
Elife, 23 Feb 2021 DOI: 10.7554/elife.61268 Link to full text
Abstract: Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light, without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of β-carotene with light, and in human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.
319.

CRISPR-dcas9 Optogenetic Nanosystem for the Blue Light-Mediated Treatment of Neovascular Lesions.

blue CRY2/CIB1 HeLa primary mouse retinal microvascular endothelial cells Nucleic acid editing
ACS Appl Bio Mater, 15 Feb 2021 DOI: 10.1021/acsabm.0c01465 Link to full text
Abstract: Vascular endothelial growth factor (VEGF) is the key regulator in neovascular lesions. The anti-VEGF injection is a major way to relieve retinal neovascularization and treat these diseases. However, current anti-VEGF therapeutics show significant drawbacks. The reason is the inability to effectively control its therapeutic effect. Therefore, how to controllably inhibit the VEGF target is a key point for preventing angiogenesis. Here, a CRISPR-dCas9 optogenetic nanosystem was designed for the precise regulation of pathologic neovascularization. This system is composed of a light-controlled regulatory component and transcription inhibition component. They work together to controllably and effectively inhibit the target gene's VEGF. The opto-CRISPR nanosystem achieved precise regulation according to individual differences, whereby the expression and interaction of gene was activated by light. The following representative model laser-induced choroid neovascularization and oxygen-induced retinopathy were taken as examples to verify the effect of this nanosystem. The results showed that the opto-CRISPR nanosystem was more efficacious in the light control group (NV area effectively reduced by 41.54%) than in the dark control group without light treatment. This strategy for the CRISPR-optogenetic gene nanosystem led to the development of approaches for treating severe eye diseases. Besides, any target gene of interest can be designed by merely replacing the guide RNA sequences in this system, which provided a method for light-controlled gene transcriptional repression.
320.

Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light‐Control in Bacteria.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Biol, 9 Feb 2021 DOI: 10.1002/adbi.202000256 Link to full text
Abstract: Light has become established as a tool not only to visualize and investigate but also to steer biological systems. This review starts by discussing the unique features that make light such an effective control input in biology. It then gives an overview of how light‐control came to progress, starting with photoactivatable compounds and leading up to current genetic implementations using optogenetic approaches. The review then zooms in on optogenetics, focusing on photosensitive proteins, which form the basis for optogenetic engineering using synthetic biological approaches. As the regulation of transcription provides a highly versatile means for steering diverse biological functions, the focus of this review then shifts to transcriptional light regulators, which are presented in the biotechnologically highly relevant model organism Escherichia coli.
321.

Transient light-activated gene expression in Chinese hamster ovary cells.

blue CRY2/CIB1 CHO-DG44 CHO-K1 Transgene expression
BMC Biotechnol, 4 Feb 2021 DOI: 10.1186/s12896-021-00670-1 Link to full text
Abstract: Chinese hamster ovary (CHO) cells are widely used for industrial production of biopharmaceuticals. Many genetic, chemical, and environmental approaches have been developed to modulate cellular pathways to improve titers. However, these methods are often irreversible or have off-target effects. Development of techniques which are precise, tunable, and reversible will facilitate temporal regulation of target pathways to maximize titers. In this study, we investigate the use of optogenetics in CHO cells. The light-activated CRISPR-dCas9 effector (LACE) system was first transiently transfected to express eGFP in a light-inducible manner. Then, a stable system was tested using lentiviral transduction.
322.

Optogenetic manipulation of cellular communication using engineered myosin motors.

blue CRY2olig Ambystoma mexicanum in vivo C3H/10T1/2 Cos-7 Control of cytoskeleton / cell motility / cell shape
Nat Cell Biol, 1 Feb 2021 DOI: 10.1038/s41556-020-00625-2 Link to full text
Abstract: Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.
323.

A CRISPR-Cas9-Based Near-Infrared Upconversion-Activated DNA Methylation Editing System.

blue CRY2/CIB1 HEK293T mouse in vivo TPC-1 Nucleic acid editing
ACS Appl Mater Interfaces, 1 Feb 2021 DOI: 10.1021/acsami.0c21223 Link to full text
Abstract: DNA methylation is a kind of a crucial epigenetic marker orchestrating gene expression, molecular function, and cellular phenotype. However, manipulating the methylation status of specific genes remains challenging. Here, a clustered regularly interspaced palindromic repeats-Cas9-based near-infrared upconversion-activated DNA methylation editing system (CNAMS) was designed for the optogenetic editing of DNA methylation. The fusion proteins of photosensitive CRY2PHR, the catalytic domain of DNMT3A or TET1, and the fusion proteins for CIBN and catalytically inactive Cas9 (dCas9) were engineered. The CNAMS could control DNA methylation editing in response to blue light, thus allowing methylation editing in a spatiotemporal manner. Furthermore, after combination with upconversion nanoparticles, the spectral sensitivity of DNA methylation editing was extended from the blue light to near-infrared (NIR) light, providing the possibility for remote DNA methylation editing. These results demonstrated a meaningful step forward toward realizing the specific editing of DNA methylation, suggesting the wide utility of our CNAMS for functional studies on epigenetic regulation and potential therapeutic strategies for related diseases.
324.

Designer Condensates: A Toolkit for the Biomolecular Architect.

blue BLUF domains Cryptochromes LOV domains Review
J Mol Biol, 1 Feb 2021 DOI: 10.1016/j.jmb.2021.166837 Link to full text
Abstract: Protein phase separation has emerged as a novel paradigm to explain the biogenesis of membraneless organelles and other so-called biomolecular condensates. While the implication of this physical phenomenon within cell biology is providing us with novel ways for understanding how cells compartmentalize biochemical reactions and encode function in such liquid-like assemblies, the newfound appreciation of this process also provides immense opportunities for designing and sculpting biological matter. Here, we propose that understanding the cell's instruction manual of phase separation will enable bioengineers to begin creating novel functionalized biological materials and unprecedented tools for synthetic biology. We present FASE as the synthesis of the existing sticker-spacer framework, which explains the physical driving forces underlying phase separation, with quintessential principles of Scandinavian design. FASE serves both as a designer condensates catalogue and construction manual for the aspiring (membraneless) biomolecular architect. Our approach aims to inspire a new generation of bioengineers to rethink phase separation as an opportunity for creating reactive biomaterials with unconventional properties and to encode novel biological function in living systems. Although still in its infancy, several studies highlight how designer condensates have immediate and widespread potential applications in industry and medicine.
325.

A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.

blue CRY2/CIB1 LOVTRAP VVD A549 Cos-7 HEK293 HEK293T HeLa mouse in vivo NCI-H1299 PC-3 U-87 MG Transgene expression
Nat Commun, 27 Jan 2021 DOI: 10.1038/s41467-021-20913-1 Link to full text
Abstract: Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.
Submit a new publication to our database