Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 276 - 300 of 371 results
276.

Optogenetic Control of Endoplasmic Reticulum-Mitochondria Tethering.

blue near-infrared BphP1/Q-PAS1 FKF1/GI iLID Magnets HEK293T NIH/3T3 primary mouse cortical neurons Organelle manipulation
ACS Synth Biol, 4 Dec 2017 DOI: 10.1021/acssynbio.7b00248 Link to full text
Abstract: The organelle interface emerges as a dynamic platform for a variety of biological responses. However, their study has been limited by the lack of tools to manipulate their occurrence in live cells spatiotemporally. Here, we report the development of a genetically encoded light-inducible tethering (LIT) system allowing the induction of contacts between endoplasmic reticulum (ER) and mitochondria, taking advantage of a pair of light-dependent heterodimerization called an iLID system. We demonstrate that the iLID-based LIT approach enables control of ER-mitochondria tethering with high spatiotemporal precision in various cell types including primary neurons, which will facilitate the functional study of ER-mitochondrial contacts.
277.

Time-gated detection of protein-protein interactions with transcriptional readout.

blue AsLOV2 iLID HEK293T
Elife, 30 Nov 2017 DOI: 10.7554/elife.30233 Link to full text
Abstract: Transcriptional assays, such as yeast two-hybrid and TANGO, that convert transient protein-protein interactions (PPIs) into stable expression of transgenes are powerful tools for PPI discovery, screens, and analysis of cell populations. However, such assays often have high background and lose information about PPI dynamics. We have developed SPARK (Specific Protein Association tool giving transcriptional Readout with rapid Kinetics), in which proteolytic release of a membrane-tethered transcription factor (TF) requires both a PPI to deliver a protease proximal to its cleavage peptide and blue light to uncage the cleavage site. SPARK was used to detect 12 different PPIs in mammalian cells, with 5 min temporal resolution and signal ratios up to 37. By shifting the light window, we could reconstruct PPI time-courses. Combined with FACS, SPARK enabled 51 fold enrichment of PPI-positive over PPI-negative cells. Due to its high specificity and sensitivity, SPARK has the potential to advance PPI analysis and discovery.
278.

Coupling optogenetics and light-sheet microscopy, a method to study Wnt signaling during embryogenesis.

blue CRY2/CRY2 D. melanogaster in vivo HEK293 Developmental processes
Sci Rep, 30 Nov 2017 DOI: 10.1038/s41598-017-16879-0 Link to full text
Abstract: Optogenetics allows precise, fast and reversible intervention in biological processes. Light-sheet microscopy allows observation of the full course of Drosophila embryonic development from egg to larva. Bringing the two approaches together allows unparalleled precision into the temporal regulation of signaling pathways and cellular processes in vivo. To develop this method, we investigated the regulation of canonical Wnt signaling during anterior-posterior patterning of the Drosophila embryonic epidermis. Cryptochrome 2 (CRY2) from Arabidopsis Thaliana was fused to mCherry fluorescent protein and Drosophila β-catenin to form an easy to visualize optogenetic switch. Blue light illumination caused oligomerization of the fusion protein and inhibited downstream Wnt signaling in vitro and in vivo. Temporal inactivation of β-catenin confirmed that Wnt signaling is required not only for Drosophila pattern formation, but also for maintenance later in development. We anticipate that this method will be easily extendable to other developmental signaling pathways and many other experimental systems.
279.

Optogenetic activation of EphB2 receptor in dendrites induced actin polymerization by activating Arg kinase.

blue CRY2olig 3T3MEF Cos-7 HEK293 rat hippocampal neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Biol Open, 20 Nov 2017 DOI: 10.1242/bio.029900 Link to full text
Abstract: Erythropoietin-producing hepatocellular (Eph) receptors regulate a wide array of developmental processes by responding to cell-cell contacts. EphB2 is well-expressed in brain and known to be important for dendritic spine development, as well as for the maintenance of the synapses, although the mechanisms of these functions have not been fully understood. Here we studied EphB2's functions in hippocampal neurons with an optogenetic approach, which allows us to specify spatial regions of signal activation and monitor in real-time the consequences of signal activation. We designed and constructed OptoEphB2, a genetically encoded photoactivatable EphB2. Photoactivation of OptoEphB2 in fibroblast cells induced receptor phosphorylation and resulted in cell rounding - a well-known cellular response to EphB2 activation. In contrast, local activation of OptoEphb2 in dendrites of hippocampal neurons induces rapid actin polymerization, resulting dynamic dendritic filopodial growth. Inhibition of Rac1 and CDC42 did not abolish OptoEphB2-induced actin polymerization. Instead, we identified Abelson Tyrosine-Protein Kinase 2 (Abl2/Arg) as a necessary effector in OptoEphB2-induced filopodia growth in dendrites. These findings provided new mechanistic insight into EphB2's role in neural development and demonstrated the advantage of OptoEphB as a new tool for studying EphB signaling.
280.

Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.

blue CRY2/CIB1 HEK293T MVD7 Signaling cascade control
Cell Chem Biol, 25 Oct 2017 DOI: 10.1016/j.chembiol.2017.09.011 Link to full text
Abstract: Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
281.

Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling.

red PhyB/PIF3 PhyB/PIF6 HEK293T HeLa mESCs Signaling cascade control
Proc Natl Acad Sci USA, 24 Oct 2017 DOI: 10.1073/pnas.1707190114 Link to full text
Abstract: Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.
282.

Optogenetic control of focal adhesion kinase signaling.

blue CRY2/CRY2 HEK293 HEK293T HeLa Signaling cascade control
Cell Signal, 23 Oct 2017 DOI: 10.1016/j.cellsig.2017.10.012 Link to full text
Abstract: Focal adhesion kinase (FAK) integrates signaling from integrins, growth factor receptors and mechanical stress to control cell adhesion, motility, survival and proliferation. Here, we developed a single-component, photo-activatable FAK, termed optoFAK, by using blue light-induced oligomerization of cryptochrome 2 (CRY2) to activate FAK-CRY2 fusion proteins. OptoFAK functions uncoupled from physiological stimuli and activates downstream signaling rapidly and reversibly upon blue light exposure. OptoFAK stimulates SRC creating a positive feedback loop on FAK activation, facilitating phosphorylation of paxillin and p130Cas in adherent cells. In detached cells or in mechanically stressed adherent cells, optoFAK is autophosphorylated upon exposure to blue light, however, downstream signaling is hampered indicating that the accessibility to these substrates is disturbed. OptoFAK may prove to be a useful tool to study the biological function of FAK in growth factor and integrin signaling, tension-mediated focal adhesion maturation or anoikis and could additionally serve as test system for kinase inhibitors.
283.

Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.

blue CRY2/CIB1 FKF1/GI HEK293T human primary dermal fibroblasts isolated MEFs NIH/3T3 Transgene expression
Nucleic Acids Res, 10 Oct 2017 DOI: 10.1093/nar/gkx804 Link to full text
Abstract: Light-inducible systems allow spatiotemporal control of a variety of biological activities. Here, we report newly optimized optogenetic tools to induce transcription with light in mammalian cells, using the Arabidopsis photoreceptor Flavin Kelch-repeat F-box 1 (FKF1) and its binding partner GIGANTEA (GI) as well as CRY2/CIB1. By combining the mutagenesis of FKF1 with the optimization of a split FKF1/GI dimerized Gal4-VP16 transcriptional system, we identified constructs enabling significantly improved light-triggered transcriptional induction. In addition, we have improved the CRY2/CIB1-based light-inducible transcription with split construct optimization. The improvements regarding the FKF1/GI- and CRY2/CIB1-based systems will be widely applicable for the light-dependent control of transcription in mammalian cells.
284.

A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription.

blue cyan CRY2/CIB1 pdDronpa1 HEK293T Nucleic acid editing
ACS Chem Biol, 22 Sep 2017 DOI: 10.1021/acschembio.7b00603 Link to full text
Abstract: Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.
285.

Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool.

blue bPAC (BlaC) NgPAC D. discoideum HEK293T Endogenous gene expression Developmental processes Immediate control of second messengers
Sci Rep, 21 Sep 2017 DOI: 10.1038/s41598-017-12162-4 Link to full text
Abstract: Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
286.

Understanding CRY2 interactions for optical control of intracellular signaling.

blue CRY2/CIB1 CRY2/CRY2 CRY2high CRY2low CRY2olig Cos-7 HEK293T Signaling cascade control
Nat Commun, 15 Sep 2017 DOI: 10.1038/s41467-017-00648-8 Link to full text
Abstract: Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2-CRY2 homo-oligomerization and CRY2-CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2-CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2-CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2-CIB1 and CRY2-CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2-CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems.Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.
287.

CRISPR-Cas9-based photoactivatable transcription systems to induce neuronal differentiation.

blue CRY2/CIB1 Magnets HEK293T HeLa human fetal fibroblasts human IPSCs Cell differentiation Endogenous gene expression
Nat Methods, 11 Sep 2017 DOI: 10.1038/nmeth.4430 Link to full text
Abstract: Our improved CRISPR-Cas9-based photoactivatable transcription systems, CPTS2.0 and Split-CPTS2.0, enable high blue-light-inducible activation of endogenous target genes in various human cell lines. We achieved reversible activation of target genes with CPTS2.0 and induced neuronal differentiation in induced pluripotent stem cells (iPSCs) by upregulating NEUROD1 with Split-CPTS2.0.
288.

Light-Responsive Promoters.

UV UVR8/COP1 HEK293T
Methods Mol Biol, 12 Aug 2017 DOI: 10.1007/978-1-4939-7223-4_13 Link to full text
Abstract: Recent advances in the development of light-inducible transgene expression systems have overcome many inherent drawbacks of conventional chemically regulated systems. The latest generation of those light-regulated systems that are specifically responsive to different wavelengths allows spatiotemporal control of gene expression in a so far unprecedented manner.In this chapter, we first describe the available light-inducible gene expression systems compatible with mammalian cells and explain their underlying mechanisms. Afterward, we give a detailed protocol for the implementation of a UVB light-inducible expression system in mammalian cells.
289.

An Engineered Optogenetic Switch for Spatiotemporal Control of Gene Expression, Cell Differentiation, and Tissue Morphogenesis.

blue CRY2/CIB1 C3H/10T1/2 HEK293T mouse in vivo Transgene expression Cell differentiation Developmental processes Nucleic acid editing
ACS Synth Biol, 9 Aug 2017 DOI: 10.1021/acssynbio.7b00147 Link to full text
Abstract: The precise spatial and temporal control of gene expression, cell differentiation, and tissue morphogenesis has widespread application in regenerative medicine and the study of tissue development. In this work, we applied optogenetics to control cell differentiation and new tissue formation. Specifically, we engineered an optogenetic "on" switch that provides permanent transgene expression following a transient dose of blue light illumination. To demonstrate its utility in controlling cell differentiation and reprogramming, we incorporated an engineered form of the master myogenic factor MyoD into this system in multipotent cells. Illumination of cells with blue light activated myogenic differentiation, including upregulation of myogenic markers and fusion into multinucleated myotubes. Cell differentiation was spatially patterned by illumination of cell cultures through a photomask. To demonstrate the application of the system to controlling in vivo tissue development, the light inducible switch was used to control the expression of VEGF and angiopoietin-1, which induced angiogenic sprouting in a mouse dorsal window chamber model. Live intravital microscopy showed illumination-dependent increases in blood-perfused microvasculature. This optogenetic switch is broadly useful for applications in which sustained and patterned gene expression is desired following transient induction, including tissue engineering, gene therapy, synthetic biology, and fundamental studies of morphogenesis.
290.

A calcium- and light-gated switch to induce gene expression in activated neurons.

blue AsLOV2 CRY2/CIB1 EL222 HEK293T mouse in vivo rat hippocampal neurons Transgene expression
Nat Biotechnol, 26 Jun 2017 DOI: 10.1038/nbt.3902 Link to full text
Abstract: Despite recent advances in optogenetics, it remains challenging to manipulate gene expression in specific populations of neurons. We present a dual-protein switch system, Cal-Light, that translates neuronal-activity-mediated calcium signaling into gene expression in a light-dependent manner. In cultured neurons and brain slices, we show that Cal-Light drives expression of the reporter EGFP with high spatiotemporal resolution only in the presence of both blue light and calcium. Delivery of the Cal-Light components to the motor cortex of mice by viral vectors labels a subset of excitatory and inhibitory neurons related to learned lever-pressing behavior. By using Cal-Light to drive expression of the inhibitory receptor halorhodopsin (eNpHR), which responds to yellow light, we temporarily inhibit the lever-pressing behavior, confirming that the labeled neurons mediate the behavior. Thus, Cal-Light enables dissection of neural circuits underlying complex mammalian behaviors with high spatiotemporal precision.
291.

A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

blue AsLOV2 HEK293T in vitro mouse in vivo rat cortical neurons S. cerevisiae Transgene expression
Nat Biotechnol, 26 Jun 2017 DOI: 10.1038/nbt.3909 Link to full text
Abstract: Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.
292.

A simple optogenetic MAPK inhibitor design reveals resonance between transcription-regulating circuitry and temporally-encoded inputs.

blue AsLOV2 Cos-7 HEK293T in vitro rat cerebellar granule neurons Signaling cascade control
Nat Commun, 12 May 2017 DOI: 10.1038/ncomms15017 Link to full text
Abstract: Engineering light-sensitive protein regulators has been a tremendous multidisciplinary challenge. Optogenetic regulators of MAPKs, central nodes of cellular regulation, have not previously been described. Here we present OptoJNKi, a light-regulated JNK inhibitor based on the AsLOV2 light-sensor domain using the ubiquitous FMN chromophore. OptoJNKi gene-transfer allows optogenetic applications, whereas protein delivery allows optopharmacology. Development of OptoJNKi suggests a design principle for other optically regulated inhibitors. From this, we generate Optop38i, which inhibits p38MAPK in intact illuminated cells. Neurons are known for interpreting temporally-encoded inputs via interplay between ion channels, membrane potential and intracellular calcium. However, the consequences of temporal variation of JNK-regulating trophic inputs, potentially resulting from synaptic activity and reversible cellular protrusions, on downstream targets are unknown. Using OptoJNKi, we reveal maximal regulation of c-Jun transactivation can occur at unexpectedly slow periodicities of inhibition depending on the inhibitor's subcellular location. This provides evidence for resonance in metazoan JNK-signalling circuits.
293.

Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

red BphS Hana3A HEK293A HeLa hMSCs mouse in vivo Neuro-2a Transgene expression Immediate control of second messengers
Sci Transl Med, 26 Apr 2017 DOI: 10.1126/scitranslmed.aal2298 Link to full text
Abstract: With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic.
294.

Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2.

blue CRY2/CIB1 HEK293T zebrafish in vivo
Nucleic Acids Res, 20 Apr 2017 DOI: 10.1093/nar/gkx260 Link to full text
Abstract: Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. In previous work, we used cryptochrome 2 (CRY2) and CIB1, Arabidopsis proteins that interact upon light illumination, to regulate transcription with light in yeast. While adopting this approach to regulate transcription in mammalian cells, we observed light-dependent redistribution and clearing of CRY2-tethered proteins within the nucleus. The nuclear clearing phenotype was dependent on the presence of a dimerization domain contained within the CRY2-fused transcriptional activators. We used this knowledge to develop two different approaches to regulate cellular protein levels with light: a system using CRY2 and CIB1 to induce protein expression with light through stimulation of transcription, and a system using CRY2 and a LOV-fused degron to simultaneously block transcription and deplete protein levels with light. These tools will allow precise, bi-directional control of gene expression in a variety of cells and model systems.
295.

Light-induced protein degradation in human-derived cells.

blue AsLOV2 HEK293 HeLa
Biochem Biophys Res Commun, 12 Apr 2017 DOI: 10.1016/j.bbrc.2017.04.041 Link to full text
Abstract: Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies.
296.

Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain.

blue CRY2/CIB1 iLID HEK293T mouse in vivo primary rat hippocampal neurons Transgene expression Neuronal activity control
Nat Methods, 3 Apr 2017 DOI: 10.1038/nmeth.4234 Link to full text
Abstract: Few tools exist to visualize and manipulate neurons that are targets of neuromodulators. We present iTango, a light- and ligand-gated gene expression system based on a light-inducible split tobacco etch virus protease. Cells expressing the iTango system exhibit increased expression of a marker gene in the presence of dopamine and blue-light exposure, both in vitro and in vivo. We demonstrated the iTango system in a behaviorally relevant context, by inducing expression of optogenetic tools in neurons under dopaminergic control during a behavior of interest. We thereby gained optogenetic control of these behaviorally relevant neurons. We applied the iTango system to decipher the roles of two classes of dopaminergic neurons in the mouse nucleus accumbens in a sensitized locomotor response to cocaine. Thus, the iTango platform allows for control of neuromodulatory circuits in a genetically and functionally defined manner with spatial and temporal precision.
297.

Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains.

green MxCBD TtCBD HEK293 zebrafish in vivo Signaling cascade control Developmental processes
Angew Chem Int Ed Engl, 20 Mar 2017 DOI: 10.1002/anie.201611998 Link to full text
Abstract: Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes.
298.

Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.

blue CRY2/CIB1 C2C12 HEK293T MCF7
Methods Mol Biol, 15 Mar 2017 DOI: 10.1007/978-1-4939-6940-1_16 Link to full text
Abstract: Optogenetic approaches enable the control of biological processes in a time- and space-resolved manner. These light-based methods are noninvasive and by using light as sole activator minimize side effects in contrast to chemical inducers. Here, we provide a protocol for the targeted control of the activity of protein kinases in mammalian cells based on the photoreceptor cryptochrome 2 (CRY2) of Arabidopsis thaliana and its interaction partner CIB1. Blue light (450 nm)-induced binding of CRY2 to CIB1 allows the recruitment of a chimeric cytosolic protein kinase AKT1 to the plasma membrane accompanied with stimulation of its kinase activity. This protocol comprises the transient and stable implementation of the light-regulated system into mammalian cells and its stimulation by blue light-emitting diodes (450 nm) irradiation as well as analysis of the light-activated AKT1.
299.

Optogenetic control of the Dab1 signaling pathway.

blue CRY2olig Cos-7 HEK293 NIH/3T3 primary mouse cortical neurons Signaling cascade control Control of cytoskeleton / cell motility / cell shape
Sci Rep, 8 Mar 2017 DOI: 10.1038/srep43760 Link to full text
Abstract: The Reelin-Dab1 signaling pathway regulates development of the mammalian brain, including neuron migrations in various brain regions, as well as learning and memory in adults. Extracellular Reelin binds to cell surface receptors and activates phosphorylation of the intracellular Dab1 protein. Dab1 is required for most effects of Reelin, but Dab1-independent pathways may contribute. Here we developed a single-component, photoactivatable Dab1 (opto-Dab1) by using the blue light-sensitive dimerization/oligomerization property of A. thaliana Cryptochrome 2 (Cry2). Opto-Dab1 can activate downstream signals rapidly, locally, and reversibly upon blue light illumination. The high spatiotemporal resolution of the opto-Dab1 probe also allows us to control membrane protrusion, retraction and ruffling by local illumination in both COS7 cells and in primary neurons. This shows that Dab1 activation is sufficient to orient cell movement in the absence of other signals. Opto-Dab1 may be useful to study the biological functions of the Reelin-Dab1 signaling pathway both in vitro and in vivo.
300.

Assembly Domain-Based Optogenetic System for the Efficient Control of Cellular Signaling.

blue Magnets Cos-7 HEK293T Control of cytoskeleton / cell motility / cell shape
ACS Synth Biol, 3 Mar 2017 DOI: 10.1021/acssynbio.7b00022 Link to full text
Abstract: We previously developed the Magnet system, which consists of two distinct Vivid protein variants, one positively and one negatively charged, designated the positive Magnet (pMag) and negative Magnet (nMag), respectively. These two proteins bind to each other through electrostatic interactions, preventing unwanted homodimerization and providing selective light-induced heterodimerization. The Magnet system enables the manipulation of cellular functions such as protein-protein interactions and genome editing, although the system could be improved further. To enhance the ability of pMagFast2 (a pMag variant with fast kinetics) to bind nMag, we introduced several pMagFast2 modules in tandem into a single construct, pMagFast2(3×). However, the expression level of this construct decreased drastically with increasing number of pMagFast2 molecules integrated into a single construct. In the present study, we applied a new approach to improve the Magnet system based on an assembly domain (AD). Among several ADs, the Ca(2+)/calmodulin-dependent protein kinase IIα association domain (CAD) most enhanced the Magnet system. The present CAD-Magnet system overcame a trade-off issue between the expression level and binding affinity. The CAD-converged 12 pMag photoswitches exhibited a stronger interaction with nMag after blue light irradiation compared with monomeric pMag. Additionally, the CAD played a key role in converging effector proteins as well in a single complex. Owing to these substantial improvements, the CAD-Magnet system combined with Tiam1 allowed us to robustly induce localized formation of vertical ruffles on the apical plasma membrane. The CAD-Magnet system combined with 4D imaging was instrumental in revealing the dynamics of ruffle formation.
Submit a new publication to our database